Biodistribution, plasma kinetics and quantification of single-pass pulmonary clearance of adrenomedullin

2005 ◽  
Vol 109 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Jocelyn DUPUIS ◽  
Alexandre CARON ◽  
Nathalie RUËL

The biodistribution, pharmacokinetics and multi-organ clearance of the vasodilator peptide AM (adrenomedullin) were evaluated in rats and its single-pass pulmonary clearance was measured in dogs by the indicator-dilution technique. Intravenously administered 125I-rAM(1–50) [rat AM(1–50)] was rapidly cleared following a two-compartment model with a very rapid distribution half-life of 2.0 min [95% CI (confidence interval), 1.98–2.01] and an elimination half-life of 15.9 min (95% CI, 15.0–16.9). The lungs retained most of the injected activity with evidence of single-pass clearance, since retention was lower after intra-arterial (13.5±0.6%) compared with intravenous (30.4±1.5%; P<0.001) injection. Lung tissue levels of total endogenous AM were 20-fold higher than in other organs with no difference in plasma levels across the pulmonary circulation. In dogs, there was 36.4±2.1% first-pass unidirectional extraction of 125I-rAM(1–50) by the lungs that was reduced to 21.9±2.4% after the administration of unlabelled rAM(1–50) (P<0.01). Extraction was not affected by calcitonin-gene-related peptide administration (40.6±2.9%), but was slightly reduced by the C-terminal fragment of human AM(22–52) (31.4±3.3%; P<0.01). These data demonstrate that the lungs are a primary site for AM clearance in vivo with approx. 36% first-pass extraction through specific receptors. This suggests that the lungs not only modulate circulating levels of this peptide, but also represent its primary target.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 2599-2599
Author(s):  
Guillemette Bernadou ◽  
Keyvan Rezai ◽  
Jean-Louis Merlin ◽  
Mario Campone ◽  
Francois Lokiec ◽  
...  

2599 Background: T has greatly modified the prognosis of HER2+ BC, but few studies have analyzed its PK. The RADHER study evaluated the interest of adding E to T as preoperative therapy for primary HER2+ BC. It also aimed at describing the PK of T and studying the impact of E with T in primary BC. Methods: Eligible pts with HER2+ operable primary BC were randomized to receive T alone (loading dose 4 mg/kg, then 2 mg/kg/week (W)) or T + E (10 mg/day (D)) for a 6-W pre-operative treatment. Blood samples were collected to measure T and E concentrations. For T, plasma samples were collected in all pts before each infusion, and at Hour (H) 1, D1, D3, W1, W2, W4, W8 and W12 after the last infusion. E concentrations were determined on whole blood collected at H0, H0.5, H1, H2, H4, H6, H12 and H24 after the first T infusion, and again after the last E intake. T and E PK were described using population compartment analyses. Results: From 82 pts randomized, 79 were evaluable for T and 22 for E PK. Mean estimated PK parameters of T were (interindividual coefficient of variation %): central (Vc) and peripheral (Vp) volumes of distribution = 2 L (24%) and 1.3 L (39%), systemic (CL) and intercompartment (Q) clearances = 0.22 L/day (19%) and 0.36 L/day, respectively. Vc increased with body weight and decreased with age, while CL increased with body weight and with tumor volume. Elimination half-life was 11 days, a value lower than that previously reported in metastatic BC (28 days). E PK was best described by a two-compartment model. Mean estimated PK parameters (RSE%) of E were: CL = 3.96 L/h (22%), Q = 29.1 L/h (7%), Vc = 119 L (11%), Vp = 1530 L (24%). E did not influence T PK. E PK was similar to that previously reported in other indications. Conclusions: This is the first study describing the PK of T and E in primary BC. Notably, T CL increases with tumor volume and the elimination half-life is only 11 days, lower than expected from previous results in metastatic BC. The differences in PK between primary and metastatic BC might lead to take a second look at trastuzumab dose regimen in primary BC. Clinical trial information: NCT00674414.


2007 ◽  
Vol 52 (1) ◽  
pp. 237-243 ◽  
Author(s):  
Harin A. Karunajeewa ◽  
Kenneth F. Ilett ◽  
Ivo Mueller ◽  
Peter Siba ◽  
Irwin Law ◽  
...  

ABSTRACT The disposition of chloroquine (CQ) and the related 4-aminoquinoline, piperaquine (PQ), were compared in Papua New Guinean children with uncomplicated malaria. Twenty-two children were randomized to 3 days of PQ phosphate at 20 mg/kg/day (12 mg of PQ base/kg/day) coformulated with dihydroartemisinin (DHA-PQ), and twenty children were randomized to 3 days of CQ at 10 mg base/kg/day with a single dose of sulfadoxine-pyrimethamine (CQ-SP). After a 42-day intensive sampling protocol, PQ, CQ, and its active metabolite monodesethyl-chloroquine (DECQ) were assayed in plasma by using high-performance liquid chromatography. A two-compartment model with first-order absorption was fitted to the PQ and CQ data. There were no significant differences in age, gender, body weight, or admission parasitemia between the two groups. The PCR-corrected 42-day adequate clinical and parasitological responses were 100% for DHA-PQ and 94% for CQ-SP, but P. falciparum reinfections during follow-up were common (33 and 18%, respectively). For PQ, the median volume of distribution at steady state, allowing for bioavailability (V ss/F), was 431 liters/kg (interquartile range [IQR], 283 to 588 liters/kg), the median clearance (CL/F) was 0.85 liters/h/kg (IQR, 0.67 to 1.06 liters/h/kg), the median distribution half-life (t 1/2 α) was 0.12 h (IQR, 0.05 to 0.66 h), and the median elimination half-life (t 1/2 β) was 413 h (IQR, 318 to 516 h). For CQ, the median V ss/F was 154 liters/kg (IQR, 101 to 210 liters/kg), the median CL/F was 0.80 liters/h/kg (IQR, 0.52 to 0.96 liters/h/kg), the median t 1/2 α was 0.43 h (IQR, 0.05 to 1.82 h), and the median t 1/2 β was 233 h (IQR, 206 to 298 h). The noncompartmentally derived median DECQ t 1/2 β was 290 h (IQR, 236 to 368 h). Combined molar concentrations of DECQ and CQ were higher than those of PQ during the elimination phase. Although PQ has a longer t 1/2 β than CQ, its prompt distribution and lack of active metabolite may limit its posttreatment malaria-suppressive properties.


1996 ◽  
Vol 40 (1) ◽  
pp. 105-109 ◽  
Author(s):  
M Dreetz ◽  
J Hamacher ◽  
J Eller ◽  
K Borner ◽  
P Koeppe ◽  
...  

The pharmacokinetics and serum bactericidal activities (SBAs) of imipenem and meropenem were investigated in a randomized crossover study. Twelve healthy male volunteers received a constant 30-min infusion of either 1 g of imipenem plus 1 g of cilastatin or 1 g of meropenem. The concentrations of the drugs in serum and urine were determined by bioassay and high-pressure liquid chromatography. Pharmacokinetic parameters were based on an open two-compartment model and a noncompartmental technique. At the end of infusion, the mean concentrations of imipenem and meropenem measured in serum were 61.2 +/- 9.8 and 51.6 +/- 6.5 mg/liter, respectively; urinary recoveries were 48.6% +/- 8.2% and 60.0% +/- 6.5% of the dose in 12 h, respectively; and the areas under the concentration-time curve from time zero to infinity were 96.1 +/- 14.4 and 70.5 +/- 10.3 mg.h/liter, respectively (P < or = 0.02). Imipenem had a mean half-life of 66.7 +/- 10.4 min; that of meropenem was 64.4 +/- 6.9 min. The volumes of distribution at steady state of imipenem and meropenem were 15.3 +/- 3.3 and 18.6 +/- 3.0 liters/70 kg, respectively, and the mean renal clearances per 1.73 m2 were 85.6 +/- 17.6 and 144.6 +/- 26.0 ml/min, respectively. Both antibiotics were well tolerated in this single-dose administration study. The SBAs were measured by the microdilution method of Reller and Stratton (L. B. Reller and C. W. Stratton, J. Infect. Dis. 136:196-204, 1977) against 40 clinically isolated strains. Mean reciprocal bactericidal titers were measured 1 and 6 h after administration. After 1 and 6 h the median SBAs for imipenem and meropenem, were 409 and 34.9 and 97.9 and 5.8, respectively, against Staphylococcus aureus, 19.9 and 4.4 and 19.4 and 4.8, respectively, against Pseudomonas aeruginosa, 34.3 and 2.2 and 232 and 15.5, respectively, against Enterobacter cloacae, and 13.4 and 2.25 and 90.7 and 7.9, respectively, against Proteus mirabilis. Both drugs had rather short biological elimination half-lives and a predominantly renal route of elimination. Both carbapenems revealed high SBAs against clinically important pathogens at 1 h; meropenem had a higher SBA against E. cloacae and P. mirabilis, and the SBA of imipenem against S. aureus was greater than the SBA of meropenem.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Brian VanScoy ◽  
Paul G. Ambrose ◽  
David R. Andes

ABSTRACT Echinocandins are important in the prevention and treatment of invasive candidiasis but limited by current dosing regimens that include daily intravenous administration. The novel echinocandin CD101 has a prolonged half-life of approximately 130 h in humans, making it possible to design once-weekly dosing strategies. The present study examined the pharmacodynamic activity of CD101 using the neutropenic invasive candidiasis mouse model against select Candida albicans (n = 4), C. glabrata (n = 3), and C. parapsilosis (n = 3) strains. The CD101 MIC ranged from 0.03 to 1 mg/liter. Plasma pharmacokinetic measurements were performed using uninfected mice after intraperitoneal administration of 1, 4, 16, and 64 mg/kg. The elimination half-life was prolonged at 28 to 41 h. Neutropenic mice were infected with each strain by lateral tail vein injection, treated with a single dose of CD101, and monitored for 7 days, at which time the organism burden was enumerated from the kidneys. Dose-dependent activity was observed for each organism. The pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC index) correlated well with efficacy (R 2, 0.74 to 0.93). The median stasis 24-h free-drug AUC/MIC targets were as follows: for C. albicans, 2.92; for C. glabrata, 0.07; and for C. parapsilosis, 2.61. The PK/PD targets for 1-log10 kill endpoint were 2- to 4-fold higher. Interestingly, the aforementioned PK/PD targets of CD101 were numerically lower for all three species than those of other echinocandins. In summary, CD101 is a promising, novel echinocandin with advantageous pharmacokinetic properties and potent in vivo pharmacodynamic activity.


2011 ◽  
Vol 56 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Paul M. Beringer ◽  
Heather Owens ◽  
Albert Nguyen ◽  
Debbie Benitez ◽  
Adupa Rao ◽  
...  

ABSTRACTCystic fibrosis (CF) is characterized by a chronic neutrophilic inflammatory response resulting in airway remodeling and progressive loss of lung function. Doxycycline is a tetracycline antibiotic that inhibits matrix metalloproteinase 9, a protease known to be associated with the severity of lung disease in CF. The pharmacokinetics of doxycycline was investigated during the course of a clinical trial to evaluate the short-term efficacy and safety in adults with CF. Plasma samples were obtained from 14 patients following a single intravenous dose and after 2 and 4 weeks of oral administration of doses ranging from 40 to 200 mg daily. The data were analyzed using noncompartmental and compartmental pharmacokinetics. The maximum concentration of drug in serum (Cmax) and area under the concentration-time curve from 0 h to infinity (AUC0-∞) values ranged from 1.0 to 3.16 mg/liter and 15.2 to 47.8 mg/liter × h, respectively, following single intravenous doses of 40 to 200 mg.Cmaxand time to maximum concentration of drug in serum (Tmax) values following multiple-dose oral administration ranged from 1.15 to 3.04 mg/liter and 1.50 to 2.33 h, respectively, on day 14 and 1.48 to 3.57 mg/liter and 1.00 to 2.17 on day 28. Predose sputum/plasma concentration ratios on days 14 and 28 ranged from 0.33 to 1.1 (mean, 0.71 ± 0.33), indicating moderate pulmonary penetration. A 2-compartment model best described the combined intravenous and oral data. Absorption was slow and delayed (absorption rate constant [Ka], 0.414 h−1; lag time, 0.484 h) but complete (bioavailability [F], 1.16). The distribution and elimination half-lives were 0.557 and 18.1 h, respectively. Based on these data, the plasma concentrations at the highest dose, 200 mg/day, are in the range reported to produce anti-inflammatory effectsin vivoand should be evaluated in clinical trials.


2017 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Mohamed Elbadawy ◽  
Mohamed Aboubakr

The aim of present study was to determine the pharmacokinetics and tissue residues of tilmicosin phosphate (tilmicoral®) as well as its in vitro and in vivo evaluation for control of Mycoplasma gallisepticum (MG) infection in broiler chickens. Pharmacokinetics (single oral dose) and tissues residues (daily for five days) of tilmicosin (25 mg/kg b.wt) in broilers were investigated. Peak plasma concentration of tilmicosin was 1.25±0.0.09 μg/mL and achieved at 3.15±0.34 h. Elimination half-life was long (44.3±7.22 h) and Vdarea was large (1.25±0.082 L/kg). Residue study revealed a good distribution and penetration of tilmicosine in lung, liver, kidney and muscles. Tilmicosin could not be detected in all tested tissues (except in lung) at 6 days after last administration. The MIC of tilmicosin and tylosin against MG were 0.054 and 0.319 μg/mL, respectively. MG infected chickens and treated by tilmicosin or tylosin showed a significant (p<0.05) improvement in mean body weights gain and a significant (p<0.05) decline in mean clinical signs score, air sac lesion score and mortality rate, however tilmicosin was a superior drug. In conclusion, timicoral® was a very effective medication for controlling MG infection in broiler chickens due to its rapid absorption, long elimination half-life, rapid and extensive penetration from blood into tissues especially lungs and air sacs. Additionally, tilmicoral® had a short withdrawal time. Moreover, its superior efficacy (in vitro and in vivo) against MG.


2007 ◽  
Vol 51 (5) ◽  
pp. 1633-1642 ◽  
Author(s):  
David Andes ◽  
William A. Craig

ABSTRACT Dalbavancin is a lipoglycopeptide antibiotic with broad-spectrum activity against gram-positive cocci and a markedly prolonged serum elimination half-life. We used the neutropenic murine thigh and lung infection models to characterize the pharmacodynamics of dalbavancin. Single-dose pharmacokinetic studies demonstrated linear kinetics and a prolonged elimination half-life which ranged from 7.6 to 13.1 h over the dose range of 2.5 to 80 mg/kg of body weight. The level of protein binding in mouse serum was 98.4%. The time course of in vivo activity of dalbavancin over the same dose range was examined in neutropenic ICR Swiss mice infected with a strain of either Streptococcus pneumoniae or Staphylococcus aureus by using the thigh infection model. The burden of organisms for S. pneumoniae was markedly reduced over the initial 24 h of study, and organism regrowth was suppressed in a dose-dependent fashion for up to the entire 96 h of study following dalbavancin doses of 2.5 mg/kg or greater. Dalbavancin doses of 20 mg/kg or greater resulted in less killing of S. aureus but were still followed by a prolonged suppression of regrowth. Multiple-dosing-regimen studies with the same organisms were used to determined which of the pharmacodynamic indices (maximum concentration in serum [C max]/MIC, area under the concentration-versus-time curve [AUC]/MIC, or the duration of time that levels in serum exceed the MIC) best correlated with treatment efficacy. These studies used a dose range of 3.8 to 480 mg/kg/6 days fractionated into 2, 4, 6, or 12 doses over the 144-h dosing period. Nonlinear regression analysis was used to examine the data fit with each pharmacodynamic index. Dalbavancin administration by the use of large, widely spaced doses was the most efficacious for both organisms. Both the 24-h AUC/MIC and the C max/MIC parameters correlated well with the in vivo efficacy of treatment against S. pneumoniae and S. aureus (for 24-h AUC/MIC, R 2 = 78 and 77%, respectively; for C max/MIC, R 2 = 90 and 57%, respectively). The free-drug 24-h AUC/MICs required for a bacteriostatic effect were 17 ± 7 for five S. pneumoniae isolates. A similar treatment endpoint for the treatment against five strains of S. aureus required a larger dalbavancin exposure, with a mean free-drug 24-h AUC/MIC of 265 ± 143. Beta-lactam resistance did not affect the pharmacodynamic target. The dose-response curves were relatively steep for both species; thus, the pharmacodynamic target needed to achieve organism reductions of 1 or 2 log10 in the mice were not appreciably larger (1.3- to 1.6-fold). Treatment was similarly efficacious in neutropenic mice and in the lung infection model. The dose-dependent efficacy and prolonged elimination half-life of dalbavancin support the widely spaced regimens used in clinical trials. The free-drug 24-h AUC/MIC targets identified in these studies should be helpful for discerning rational susceptibility breakpoints. The current MIC90 for the target gram-positive organisms would fall within this value.


1984 ◽  
Vol 246 (1) ◽  
pp. E14-E20
Author(s):  
P. Vaitkus ◽  
A. Sirek ◽  
K. H. Norwich ◽  
O. V. Sirek ◽  
R. H. Unger ◽  
...  

In response to a single intravenous injection of bovine growth hormone (GH, 100 micrograms/kg) the non-steady-state turnover of glucose, as well as portal levels of insulin (IRI), glucagon (IRG), somatostatin (SRIF), and glucose were determined in normal conscious dogs. Using the two-compartment model validated to calculate rapid turnover changes and tracer infusion methods, the rate of hepatic output of glucose [Ra(t)] was found to be increased, reaching a maximum of 224 mg/min, 7.4 times the basal rate, 4 min after injection of GH. Ra(t) returned to its basal level 35 min later in a damped oscillatory manner. Hormone determinations were carried out in portal venous blood drawn every 2 min for 2 h from an indwelling catheter. IRG peaked 2 min after GH injection and levels of IRI, SRIF, and glucose peaked between 4 and 8 min. Hormone concentrations returned to normal, i.e., were oscillating around base-line levels, about 30 min after GH. These experiments demonstrate for the first time in vivo that a pulse of GH causes transient changes of glucose turnover and measurable alterations of the hormonal homeostasis in the splanchnic area.


2014 ◽  
Vol 59 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Marina Chavchich ◽  
Arba L. Ager ◽  
Hong-Ming Shieh ◽  
Gavin D. Heffernan ◽  
...  

ABSTRACT4-(tert-Butyl)-2-((tert-butylamino)methyl)-6-(6-(trifluoromethyl)pyridin-3-yl)-phenol (JPC-2997) is a new aminomethylphenol compound that is highly activein vitroagainst the chloroquine-sensitive D6, the chloroquine-resistant W2, and the multidrug-resistant TM90-C2BPlasmodium falciparumlines, with 50% inhibitory concentrations (IC50s) ranging from 7 nM to 34 nM. JPC-2997 is >2,500 times less cytotoxic (IC50s > 35 μM) to human (HepG2 and HEK293) and rodent (BHK) cell lines than the D6 parasite line. In comparison to the chemically related WR-194,965, a drug that had advanced to clinical studies, JPC-2997 was 2-fold more activein vitroagainstP. falciparumlines and 3-fold less cytotoxic. The compound possesses potentin vivosuppression activity againstPlasmodium berghei, with a 50% effective dose (ED50) of 0.5 mg/kg of body weight/day following oral dosing in the Peters 4-day test. The radical curative dose of JPC-2997 was remarkably low, at a total dose of 24 mg/kg, using the modified Thompson test. JPC-2997 was effective in curing threeAotusmonkeys infected with a chloroquine- and pyrimethamine-resistant strain ofPlasmodium vivaxat a dose of 20 mg/kg daily for 3 days. At the doses administered, JPC-2997 appeared to be well tolerated in mice and monkeys. Preliminary studies of JPC-2997 in mice show linear pharmacokinetics over the range 2.5 to 40 mg/kg, a low clearance of 0.22 liters/h/kg, a volume of distribution of 15.6 liters/kg, and an elimination half-life of 49.8 h. The highin vivopotency data and lengthy elimination half-life of JPC-2997 suggest that it is worthy of further preclinical assessment as a partner drug.


1962 ◽  
Vol 40 (2) ◽  
pp. 188-202 ◽  
Author(s):  
Shlomo Burstein ◽  
Ralph I. Dorfman

ABSTRACT 3H and 14C specific activities of dehydroepiandrosterone, androsterone, 3α-hydroxy-5β-androstan-17-one and 3α-hydroxy-5α-androst-16-ene (without dilution) have been determined following a single intravenous injection of 4-14C-cholesterol and 7α-3H-pregnenolone to a virilized woman with an adrenal adenoma and massive dehydroepiandrosterone excretion. Assuming a one compartment model, or a two compartment model in which the injected radioactivity enters the compartment in which the precursor is secreted exclusively, a new pathway by which dehydroepiandrosterone is formed from cholesterol not through pregnenolone and possibly by cleavage of the side chain C-17 and C-20 is indicated. Analysis of the data by a model in which pregnenolone is secreted into two separate compartments in which progesterone and dehydroepiandrosterone are made, respectively, would explain the findings without necessitating the assumption of a new pathway. 3α-Hydroxy-5α-androst-16-ene was isolated from urine following incubation with β-glucuronidase and partition chromatography on celite suggesting that this steroid is a genuine natural product as surmised by Prelog & Ruzicka (1944) and Brooksbank & Haslewood (1950). 2-14C-Mevalonate was shown to give rise to C19 steroids which is the first in vivo demonstration that mevalonic acid is a precursor of the steroid nucleus in man.


Sign in / Sign up

Export Citation Format

Share Document