miR-223 represents a biomarker in acute and chronic liver injury

2017 ◽  
Vol 131 (15) ◽  
pp. 1971-1987 ◽  
Author(s):  
Florian Schueller ◽  
Sanchari Roy ◽  
Sven Heiko Loosen ◽  
Jan Alder ◽  
Christiane Koppe ◽  
...  

Background: Dysregulation of miRNAs has been described in tissue and serum from patients with acute and chronic liver diseases. However, only little information on the role of miR-223 in the pathophysiology of acute liver failure (ALF) and liver cirrhosis is available. Methods: We analysed cell and tissue specific expression levels as well as serum concentrations of miR-223 in mouse models of acute (hepatic ischaemia and reperfusion, single CCl4 injection) and chronic (repetitive CCl4 injection, bile duct ligation (BDL)) liver diseases. Results were validated in patients and correlated with clinical data. The specific hepatic role of miR-223 was analysed by using miR-223−/− mice in these models. Results: miR-223 expression was significantly dysregulated in livers from mice after induction of acute liver injury and liver fibrosis as well as in liver samples from patients with ALF or liver cirrhosis. In acute and chronic models, hepatic miR-223 up-regulation was restricted to hepatocytes and correlated with degree of liver injury and hepatic cell death. Moreover, elevated miR-223 expression was reflected by significantly higher serum levels of miR-223 during acute liver injury. However, functional in vitro and in vivo experiments revealed no differences in the degree of liver cell death and liver fibrosis as miR-223−/− mice behaved identical with wild-type (wt) mice in all tested models. Conclusion: miR-223 represents a promising diagnostic marker in a panel of serum markers of liver injury. Together with previously published data, our results highlight that the role of miR-223 in the pathophysiology of the liver is complex and needs further analysis.

2020 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
Na Young Lee ◽  
Ki Tae Suk

Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.


Author(s):  
Na Young Lee ◽  
Ki Tae Suk

Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, genetic conditions such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis, and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease from other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver cirrhosis.


2008 ◽  
Vol 294 (2) ◽  
pp. G498-G505 ◽  
Author(s):  
Nobuyuki Tamaki ◽  
Etsuro Hatano ◽  
Kojiro Taura ◽  
Masaharu Tada ◽  
Yuzo Kodama ◽  
...  

CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is a key component in endoplasmic reticulum (ER) stress-mediated apoptosis. The goal of the study was to investigate the role of CHOP in cholestatic liver injury. Acute liver injury and liver fibrosis were assessed in wild-type (WT) and CHOP-deficient mice following bile duct ligation (BDL). In WT livers, BDL induced overexpression of CHOP and Bax, a downstream target in the CHOP-mediated ER stress pathway. Liver fibrosis was attenuated in CHOP-knockout mice. Expression levels of α-smooth muscle actin and transforming growth factor-β1 were reduced, and apoptotic and necrotic hepatocyte death were both attenuated in CHOP-deficient mice. Hepatocytes were isolated from WT and CHOP-deficient mice and treated with 400 μM glycochenodeoxycholic acid (GCDCA) for 8 h to examine bile acid-induced apoptosis and necrosis. GCDCA induced overexpression of CHOP and Bax in isolated WT hepatocytes, whereas CHOP-deficient hepatocytes had reduced cleaved caspase-3 expression and a lower propidium iodide index after GCDCA treatment. In conclusion, cholestasis induces CHOP-mediated ER stress and triggers hepatocyte cell death, and CHOP deficiency attenuates this cell death and subsequent liver fibrosis. The results demonstrate an essential role of CHOP in development of liver fibrosis due to cholestatic liver damage.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingfei Chu ◽  
Xinyu Gu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
Haihong Zhu

In addition to playing a pivotal role in cellular energetics and biosynthesis, mitochondrial components are key operators in the regulation of cell death. In addition to apoptosis, necrosis is a highly relevant form of programmed liver cell death. Differential activation of specific forms of programmed cell death may not only affect the outcome of liver disease but may also provide new opportunities for therapeutic intervention. This review describes the role of mitochondria in cell death and the mechanism that leads to chronic liver hepatitis and liver cirrhosis. We focus on mitochondrial-driven apoptosis and current knowledge of necroptosis and discuss therapeutic strategies for targeting mitochondrial-mediated cell death in liver diseases.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Shi Yin ◽  
Bin Gao

Toll-like receptor 3 (TLR3) is a member of the TLR family that can recognize double-stranded RNA (dsRNA), playing an important role in antiviral immunity. Recent studies have shown that TLR3 is also expressed on parenchymal and nonparenchymal cells in the liver as well as on several types of immune cells. In this review, we summarize the role of TLR3 in liver injury, inflammation, regeneration, and liver fibrosis, and discuss the implication of TLR3 in the pathogenesis of human liver diseases including viral hepatitis and autoimmune liver disease.


2005 ◽  
Vol 289 (6) ◽  
pp. G987-G990 ◽  
Author(s):  
E. S. Baskin-Bey ◽  
G. J. Gores

Apoptosis, a prominent form of cell death, is a prime feature of many acute and chronic liver diseases. Apoptosis requires mitochondrial dysfunction, which is regulated by proteins of the Bcl-2 family. Whether or not a cell should live or die is controlled by the interaction of multidomain Bcl-2 proteins with proapoptotic BH3 domain-only proteins of this family. Current models suggest multidomain, antiapoptotic Bcl-2 proteins prevent mitochondrial dysfunction by sequestering and/or preventing activation of its proapoptotic relatives. BH3-only proteins initiate cell death by neutralizing and or ligating multidomain prosurvival Bcl-2 proteins. Thus BH3 domain-only proteins are paramount in the apoptotic process as exemplified by the role of the BH3 domain-only protein Bid in liver injury. In this concise review, we will focus on how these BH3 domain-only proteins are regulated in the cell, their association with the Bcl-2 family of proteins, and finally, current information regarding their involvement in liver cell apoptosis and injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziheng Yang ◽  
Jie Zhang ◽  
Yan Wang ◽  
Jing Lu ◽  
Quan Sun

Polarization of hepatic macrophages plays a crucial role in the injury and repair processes of acute and chronic liver diseases. However, the underlying molecular mechanisms remain elusive. Caveolin-1 (Cav1) is the structural protein of caveolae, the invaginations of the plasma membrane. It has distinct functions in regulating hepatitis, cirrhosis, and hepatocarcinogenesis. Given the increasing number of cases of liver cancer, nonalcoholic steatohepatitis, and non-alcoholic fatty liver disease worldwide, investigations on the role of Cav1 in liver diseases are warranted. In this study, we aimed to investigate the role of Cav1 in the pathogenesis of acute liver injury. Wild-type (WT) and Cav1 knockout (KO) mice (Cav1tm1Mls) were injected with carbon tetrachloride (CCl4). Cav1 KO mice showed significantly reduced degeneration, necrosis, and apoptosis of hepatocytes and decreased level of alanine transaminase (ALT) compared to WT mice. Moreover, Cav1 was required for the recruitment of hepatic macrophages. The analysis of the mRNA levels of CD86, tumor necrosis factor (TNF), and interleukin (IL)-6, as well as the protein expression of inducible nitric oxide synthase (iNOS), indicated that Cav1 deficiency inhibited the polarization of hepatic macrophages towards the M1 phenotype in the injured liver. Consistent with in vivo results, the expressions of CD86, TNF, IL-6, and iNOS were significantly downregulated in Cav1 KO macrophages. Also, fluorescence-activated cell sorting (FACS) analysis showed that the proportion of M1 macrophages was significantly decreased in the liver tissues obtained from Cav1 KO mice following CCl4 treatment. In summary, our results showed that Cav1 deficiency protected mice against CCl4-induced acute liver injury by regulating polarization of hepatic macrophages. We provided direct genetic evidence that Cav1 expressed in hepatic macrophages contributed to the pathogenesis of acute liver injury by regulating the polarization of hepatic macrophages towards the M1 phenotype. These findings suggest that Cav1 expressed in macrophages may represent a potential therapeutic target for acute liver injury.


1998 ◽  
Vol 121 (2) ◽  
pp. 391-395 ◽  
Author(s):  
L. A. KONDILI ◽  
M. E. TOSTI ◽  
M. SZKLO ◽  
A. COSTANTINO ◽  
R. COTICHINI ◽  
...  

The present study examined the effect of hepatitis B virus (HBV) and alcohol intake, and the role of hepatitis delta virus (HDV) and hepatitis C virus (HCV) in the aetiology of chronic liver disease in Albania. A total of 106 cases of liver cirrhosis or chronic hepatitis were compared to 195 control patients without these or other liver diseases. Adjusted odds ratios were 52·7 (95% CI 22·7–122) for HBV surface antigen, 26·9 (95% CI 4·9–147) for anti-HCV, 26·2 (95% CI 3·1–221) for anti-HDV, 2.4 (95% CI 1·3–4·4) for lifetime alcohol intake and 2·3 (95% CI 1–5·5) for duration of alcohol intake. Although not significant, an interaction was suggested between HBsAg and anti-HCV and between HBsAg and alcohol intake. Our study underlines the role of hepatitis viruses in the development of chronic liver diseases. Additionally, it suggests that heavy alcohol intake may magnify the effect of HBV on these diseases. HBV vaccination and alcohol abstention appear to be important strategies to reduce the risk of liver cirrhosis and chronic hepatitis in Albania.


2021 ◽  
Vol 22 (3) ◽  
pp. 1492
Author(s):  
Raphael Mohr ◽  
Burcin Özdirik ◽  
Joeri Lambrecht ◽  
Münevver Demir ◽  
Johannes Eschrich ◽  
...  

In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.


Sign in / Sign up

Export Citation Format

Share Document