scholarly journals Genetic deficiency of Phactr1 promotes atherosclerosis development via facilitating M1 macrophage polarization and foam cell formation

2020 ◽  
Vol 134 (17) ◽  
pp. 2353-2368 ◽  
Author(s):  
Te Li ◽  
Lijuan Ding ◽  
Yonggang Wang ◽  
Ou Yang ◽  
Shudong Wang ◽  
...  

Abstract Genetic variants in phosphatase and actin regulator-1 (Phactr1) are reported to be associated with arteriosclerotic cardiovascular disease (ASCVD). However, the function of Phactr1 in atherosclerosis remains unclear. Patients with acute coronary syndrome (ACS) who underwent coronary angiography and optical coherence tomography (OCT) were enrolled and divided into non-ST segment elevation (NST-ACS) group and ST-ACS group. The expression of Phactr1 on monocytes was higher in NST-ACS and ST-ACS groups as compared with control group. Furthermore, NST-ACS patients who have more vulnerable features including thin-cap fibroatheroma (TCFA) and large lipid area showed higher levels of Phactr1 on monocytes than those with stable plaques. Through mouse models of atherosclerosis, Phactr1−/−Apoe−/− mice (double knockout mice, DKO) developed more severe atherosclerotic plaques, recruiting more macrophages into subendothelium and having elevated levels of proinflammatory cytokines in plaques. Similarly, Apoe knockout mice (Apoe−/−) receiving DKO bone marrow (BM) exhibited elevated plaque burden compared with Apoe−/− mice receiving Apoe−/− BM, indicating the protective effect of Phactr1 in hematopoietic cells. We found that depletion of Phactr1 in BM-derived macrophages (BMDMs) tended to differentiate into M1 phenotype, produced more proatherogenic cytokines and eventually converted into foam cells driven by oxidized low-density lipoprotein (ox-LDL). Mechanistically, Phactr1 activated CREB signaling via directly binding to CREB, up-regulating CREB phosphorylation and inducing KLF4 expression. Finally, overexpression of KLF4 partly rescued the excessive inflammation response and foam cell formation induced by deficiency of Phactr1. In conclusion, our study demonstrates that elevated Phactr1 in monocytes is a promising biomarker for vulnerable plaques, while increased Phactr1 attenuates atherosclerotic development via activation of CREB and M2 macrophage differentiation.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wen-Lin Cheng ◽  
Quan Zhang ◽  
Bo Li ◽  
Jian-Lei Cao ◽  
Lin Jiao ◽  
...  

Macrophage polarization in response to environmental cues has emerged as an important event in the development of atherosclerosis. Compelling evidences suggest that P21-activated kinases 1 (PAK1) is involved in a wide variety of diseases. However, the potential role and mechanism of PAK1 in regulation of macrophage polarization remains to be elucidated. Here, we observed that PAK1 showed a dramatically increased expression in M1 macrophages but decreased expression in M2 macrophages by using a well-established in vitro model to study heterogeneity of macrophage polarization. Adenovirus-mediated loss-of-function approach demonstrated that PAK1 silencing induced an M2 macrophage phenotype-associated gene profiles but repressed the phenotypic markers related to M1 macrophage polarization. Additionally, dramatically decreased foam cell formation was found in PAK1 silencing-induced M2 macrophage activation which was accompanied with alternation of marker account for cholesterol efflux or influx from macrophage foam cells. Moderate results in lipid metabolism and foam cell formation were found in M1 macrophage activation mediated by AdshPAK1. Importantly, we presented mechanistic evidence that PAK1 knockdown promoted the expression of PPARγ, and the effect of macrophage activation regulated by PAK1 silencing was largely reversed when a PPARγ antagonist was utilized. Collectively, these findings reveal that PAK1 is an independent effector of macrophage polarization at least partially attributed to regulation of PPARγ expression, which suggested PAK1-PPARγ axis as a novel therapeutic strategy in atherosclerosis management.


2020 ◽  
Vol 21 (15) ◽  
pp. 5511
Author(s):  
En-Shyh Lin ◽  
Yu-An Hsu ◽  
Ching-Yao Chang ◽  
Hui-Ju Lin ◽  
Chih Sheng Chen ◽  
...  

The formation of foam cells, which are macrophages that have engulfed oxidized low-density lipoprotein (OxLDL), constitutes the first stage in the development of atherosclerosis. Previously, we found that knocking down galectin-12, a negative regulator of lipolysis, leads to reduced secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that plays an important role in atherosclerosis. This prompted us to study the role of galectin-12 in atherosclerosis. With that aim, we examined foam cell formation in Gal12‒/‒ murine macrophages exposed to OxLDL and acetylated LDL (AcLDL). Then, we generated an LDL receptor and galectin-12 double knockout (DKO) mice and studied the effect of galectin-12 on macrophage function and atherosclerosis. Lastly, we evaluated the role of galectin-12 in human THP-1 macrophages using a doxycycline-inducible conditional knockdown system. Galectin-12 knockout significantly inhibited foam cell formation in murine macrophages through the downregulation of cluster of differentiation 36 (CD36), and the upregulation of ATP Binding Cassette Subfamily A Member 1 (ABCA1), ATP Binding Cassette Subfamily G Member 1 (ABCG1), and scavenger receptor class B type 1 (SRB1). Consistent with this, galectin-12 knockdown inhibited foam cell formation in human macrophages. In addition, the ablation of galectin-12 promoted M2 macrophage polarization in human and murine macrophages as evidenced by the upregulation of the M2 marker genes, CD206 and CD163, and downregulation of the M1 cytokines, tumor necrosis factor α (TNF- α), interleukin-6 (IL-6), and MCP-1. Moreover, the ablation of galectin-12 decreased atherosclerosis formation in DKO mice. Based on these results, we propose galectin-12 as a potential therapeutic target for atherosclerosis.


Author(s):  
Parimalanandhini Duraisamy ◽  
Sangeetha Ravi ◽  
Mahalakshmi Krishnan ◽  
Catherene M. Livya ◽  
Beulaja Manikandan ◽  
...  

: Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Takuya Watanabe ◽  
Yoshitaka Iso ◽  
Shinji Koba ◽  
Tetsuo Sakai ◽  
Gang Xu ◽  
...  

Human heregulins, neuregulin-1 type I polypeptides known to activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, were recently found to be expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester (CE) accumulation, is modulated by scavenger receptor class A (SR-A), acyl-CoA:cholesterol acyltransferase-1 (ACAT1), and ATP-binding cassette transporter A1 (ABCA1). The present study clarified the functional roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta1 levels were significantly decreased in 31 patients with acute coronary syndrome (ACS) and 33 patients with stable angina pectoris as compared with 34 mild hypertensive patients and 40 healthy volunteers (1.3+/−0.3, 2.0+/−0.4 versus 7.6+/−1.4, 8.2+/−1.2 ng/mL; at least P < 0.01). Immunoreactive heregulins and these receptor c-erbB3 were detectable within human coronary atherothrombosis obtained from ACS patients. In primary cultured human monocyte-macrophages, the expression of endogenous heregulins, heregulin-beta1, and c-erbB3 increased during monocytic differentiation into macrophages. In human macrophages differentiated by 7-day culture, exogenous heregulin-beta1, but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein (acLDL)-induced CE accumulation by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta1 significantly decreased endocytic uptake of [ 125 I]acLDL and increased cholesterol efflux by apolipoprotein A1 from human macrophages. Chronic infusion of heregulin-beta1 by osmotic mini-pumps into apolipoprotein E-deficient mice significantly suppressed the progression of macrophage-driven atherosclerotic lesions by 64%. Our study provides the first evidence that heregulin-beta1 may participate in anti-atherogenesis by suppressing macrophage foam cell formation via SR-A and ACAT1 down-regulation and ABCA1 up-regulation.


2008 ◽  
Vol 26 (10) ◽  
pp. 1955-1965 ◽  
Author(s):  
Yuji Shiraishi ◽  
Takuya Watanabe ◽  
Toshiaki Suguro ◽  
Masaharu Nagashima ◽  
Rina Kato ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yinhe Cai ◽  
Junmao Wen ◽  
Siwen Ma ◽  
Zhexing Mai ◽  
Qunzhang Zhan ◽  
...  

Macrophage polarization plays a vital impact in triggering atherosclerosis (AS) progression and regression. Huang-Lian-Jie-Du Decoction (HLJDD), a famous traditional Chinese decoction, displays notable anti-inflammatory and lipid-lowering effects in different animal models. However, its effects and mechanisms on AS have not been clearly defined. We determined whether HLJDD attenuated atherosclerosis and plaques vulnerability by regulating macrophage polarization in ApoE−/− mice induced by high-fat diet (HFD). Furthermore, we investigated the effects of HLJDD on macrophage polarization in oxidized low-density lipoprotein (ox-LDL) induced RAW264.7 cells. For in vivo assay, compared with the model group, HLJDD ameliorated lipid metabolism, with significantly decreased levels of serum triglyceride, total cholesterol (CHOL), and lipid density lipoprotein. HLJDD suppressed serum tumor necrosis factor α (TNF-α) and IL-1β levels with increased serum IL-10 level, and inhibited mRNA level of NLRP3 inflammasome in carotid tissues. HLJDD enhanced carotid lesion stability by decreasing macrophage infiltration together with increased expression of collagen fibers and α-SMA. Moreover, HLJDD inhibited M1 macrophage polarization, which decreased the expression and mRNA levels of M1 markers [inducible nitric oxide synthase (iNOS) and CD86]. HLJDD enhanced alternatively activated macrophage (M2) activation, which increased the expression and mRNA levels of M2 markers (Arg-1 and CD163). For in vitro assay, HLJDD inhibited foam cell formation in RAW264.7 macrophages disturbed by ox-LDL. Besides, groups with ox-LDL plus HLJDD drug had a lower expression of CD86 and mRNA levels of iNOS, CD86, and IL-1β, but higher expression of CD163 and mRNA levels of Arg-1, CD163, and IL-10 than ox-LDL group. Collectively, our results revealed that HLJDD alleviated atherosclerosis and promoted plaque stability by suppressing M1 polarization and enhancing M2 polarization.


2021 ◽  
Author(s):  
Pengyu Zong ◽  
Jianlin Feng ◽  
Zhichao Yue ◽  
Albert S. Yu ◽  
Yasuo Mori ◽  
...  

Atherosclerosis is the major cause of ischemic heart diseases and ischemic brain stroke, which are the leading causes of mortality worldwide. The central pathological features of atherosclerosis include macrophage infiltration and foam cell formation. However, the detailed mechanisms regulating these two processes remain unclear. Here we show that oxidative stress-activated Ca2+-permeable TRPM2 plays a key role in the pathogenesis of atherosclerosis. Trpm2 deletion produces a potent protective effect against atherosclerosis in ApoE-/- mice fed with a high-fat diet (HFD), as evidenced by reduced atherosclerotic plaque burden, decreased macrophage load and suppressed inflammasome activation in the vessel wall. Moreover, we show that Trpm2 deletion or inhibition reduces oxidized low-density lipoprotein (oxLDL) uptake by macrophages, suppresses macrophage infiltration induced by monocyte chemoattractant protein-1 (MCP1), and prevents the impairment of macrophage emigration caused by oxLDL. Intriguingly, we uncover that activation of CD36, an oxLDL receptor, can promote the activation of TRPM2, and vice versa, the CD36-mediated inflammatory cascade in atherosclerosis is dependent on TRPM2. In transfected HEK293T cells, CD36 ligands oxLDL and TSP1 induce TRPM2 activation in a CD36-dependent manner. Deleting Trpm2 or inhibiting TRPM2 activity in cultured macrophages suppresses the CD36 signaling cascade induced by oxLDL and TSP1. Our studies establish TRPM2-CD36 axis as a new mechanism underlying atherogenesis, and suggest TRPM2 as an effective therapeutic target for atherosclerosis.


Cytokine ◽  
2021 ◽  
Vol 146 ◽  
pp. 155630
Author(s):  
Minghua Zhang ◽  
Jing Liu ◽  
Rong Gao ◽  
Yazhuo Hu ◽  
Li Lu ◽  
...  

2018 ◽  
Vol 118 (07) ◽  
pp. 1329-1339 ◽  
Author(s):  
Pedro Melgar-Lesmes ◽  
Alvaro Sánchez-Herrero ◽  
Ferran Lozano-Juan ◽  
Jose de la Torre Hernández ◽  
Eulàlia Montell ◽  
...  

AbstractChondroitin sulphate (CS) has long been used to treat osteoarthritis. Some investigations have also shown that the treatment with CS could reduce coronary events in patients with heart disease but no studies have identified the mechanistic role of these therapeutic effects. We aimed to investigate how the treatment with CS can interfere with the progress of atherosclerosis. The aortic arch, thoracic aorta and serum were obtained from apolipoprotein E (ApoE) knockout mice fed for 10 weeks with high-fat diet and then treated with CS (300 mg/kg, n = 15) or vehicle (n = 15) for 4 weeks. Atheromatous plaques were highlighted in aortas with Oil Red staining and analysed by microscopy. ApoE knockout mice treated with CS exhibited attenuated atheroma lesion size by 68% as compared with animals receiving vehicle. Serum lipids, glucose and C-reactive protein were not affected by treatment with CS. To investigate whether CS locally affects the inflamed endothelium or the formation of foam cells in plaques, human endothelial cells and monocytes were stimulated with tumour necrosis factor α or phorbol myristate acetate in the presence or absence of CS. CS reduced the expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and ephrin-B2 and improved the migration of inflamed endothelial cells. CS inhibited foam cell formation in vivo and concomitantly CD36 and CD146 expression and oxidized low-density lipoprotein uptake and accumulation in cultured activated human monocytes and macrophages. Reported cardioprotective effects of CS may arise from modulation of pro-inflammatory activation of endothelium and monocytes and foam cell formation.


2019 ◽  
Author(s):  
Rajesh K. Singh ◽  
Abigail S. Haka ◽  
Arky Asmal ◽  
Valéria C. Barbosa-Lorenzi ◽  
Inna Grosheva ◽  
...  

ABSTRACTObjectiveAggregation and modification of low-density lipoproteins (LDL) promotes their retention and accumulation in the arteries. This is a critical initiating factor during atherosclerosis. Macrophage catabolism of aggregated LDL (agLDL) occurs using a specialized extracellular, hydrolytic compartment, the lysosomal synapse (LS). Compartment formation by local actin polymerization and delivery of lysosomal contents by exocytosis promotes acidification of the compartment and degradation of agLDL. Internalization of metabolites such as cholesterol promotes foam cell formation, a process that drives atherogenesis. Further, there is accumulating evidence for the involvement of TLR4 and its adaptor protein MyD88 in atherosclerosis. Here, we investigated the role of TLR4 in catabolism of agLDL using the LS and foam cell formation.Approach and ResultsUsing bone marrow-derived macrophages (BMMs) from knockout mice, we find that TLR4 and MyD88 regulate compartment formation, lysosome exocytosis, acidification of the compartment and foam cell formation. Using siRNA, pharmacological inhibition and knockout BMMs, we implicate SYK, PI3 kinase and Akt in agLDL catabolism using the LS. Using bone marrow transplantation of LDL receptor knockout mice with TLR4KO bone marrow, we show that deficiency of TLR4 protects macrophages from lipid accumulation during atherosclerosis. Finally, we demonstrate that macrophages in vivo form an extracellular compartment and exocytose lysosome contents similar to that observed in vitro for degradation of agLDL.ConclusionsWe present a mechanism in which interaction of macrophages with agLDL initiates a TLR4 signaling pathway, resulting in formation of the LS, catabolism of agLDL and lipid accumulation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document