Profile of Auditory Temporal Processing in Older Listeners

1999 ◽  
Vol 42 (2) ◽  
pp. 300-311 ◽  
Author(s):  
Sandra Gordon-Salant ◽  
Peter J. Fitzgibbons

This investigation examined age-related performance differences on a range of speech and nonspeech measures involving temporal manipulation of acoustic signals and variation of stimulus complexity. The goal was to identify a subset of temporally mediated measures that effectively distinguishes the performance patterns of younger and older listeners, with and without hearing loss. The nonspeech measures included duration discrimination for simple tones and gaps, duration discrimination for tones and gaps embedded within complex sequences, and discrimination of temporal order. The speech measures were undistorted speech, time-compressed speech, reverberant speech, and combined time-compressed + reverberant speech. All speech measures were presented both in quiet and in noise. Strong age effects were observed for the nonspeech measures, particularly in the more complex stimulus conditions. Additionally, age effects were observed for all time-compressed speech conditions and some reverberant speech conditions, in both quiet and noise. Effects of hearing loss were observed also for the speech measures only. Discriminant function analysis derived a formula, based on a subset of these measures, for classifying individuals according to temporal performance consistent with age and hearing loss categories. The most important measures to accomplish this goal involved conditions featuring temporal manipulations of complex speech and nonspeech signals.

2001 ◽  
Vol 44 (4) ◽  
pp. 709-719 ◽  
Author(s):  
Sandra Gordon-Salant ◽  
Fitzgibbons Peter J.

Older people frequently show poorer recognition of rapid speech or time-compressed speech than younger listeners. The present investigation sought to determine if the age-related problem in recognition of time-compressed speech could be attributed primarily to a decline in the speed of information processing or to a decline in processing brief acoustic cues. The role of the availability of linguistic cues on recognition performance was examined also. Younger and older listeners with normal hearing and with hearing loss participated in the experiments. Stimuli were sentences, linguistic phrases, and strings of random words that were unmodified in duration or were time compressed with uniform time compression or with selective time compression of consonants, vowels, or pauses. Age effects were observed for recognition of unmodified random words, but not for sentences and linguistic phrases. Analysis of difference scores (unmodified speech versus time-compressed speech) showed age effects for time-compressed sentences and phrases. The forms of time compression that were notably difficult for older listeners were uniform time compression and selective time compression of consonants. Indeed, poor performance in recognizing uniformly time-compressed speech was attributed primarily to difficulty in recognizing speech that incorporated selective time compression of consonants. Hearing loss effects were observed also for most of the listening conditions, although these effects were independent of the aging effects. In general, the findings support the notion that the problems of older listeners in recognizing time-compressed speech are associated with difficulty in processing the brief, limited acoustic cues for consonants that are inherent in rapid speech.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6856 ◽  
Author(s):  
Juhong Zhang ◽  
Na Wang ◽  
Anting Xu

Background Previous evidence has indicated CMP-Neu5Ac hydroxylase (Cmah) disruption inducesaging-related hearing loss (AHL). However, its function mechanisms remain unclear. This study was to explore the mechanisms of AHL by using microarray analysis in the Cmah deficiency animal model. Methods Microarray dataset GSE70659 was available from the Gene Expression Omnibus database, including cochlear tissues from wild-type and Cmah-null C57BL/6J mice with old age (12 months, n = 3). Differentially expressed genes (DEGs) were identified using the Linear Models for Microarray data method and a protein–protein interaction (PPI) network was constructed using data from the Search Tool for the Retrieval of Interacting Genes database followed by module analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. The upstream miRNAs and potential small-molecule drugs were predicted by miRwalk2.0 and Connectivity Map, respectively. Results A total of 799 DEGs (449 upregulated and 350 downregulated) were identified. Upregulated DEGs were involved in Cell adhesion molecules (ICAM1, intercellular adhesion molecule 1) and tumor necrosis factor (TNF) signaling pathway (FOS, FBJ osteosarcoma oncogene; ICAM1), while downregulated DEGs participated in PPAR signaling pathway (PPARG, peroxisome proliferator-activated receptor gamma). A PPI network was constructed, in which FOS, ICAM1 and PPARG were ranked as hub genes and PPARG was a transcription factor to regulate other target genes (ICAM1, FOS). Function analysis of two significant modules further demonstrated PPAR signaling pathway was especially important. Furthermore, mmu-miR-130b-3p, mmu-miR-27a-3p, mmu-miR-27b-3p and mmu-miR-721 were predicted to regulate PPARG. Topiramate were speculated to be a potential small-molecule drug to reverse DEGs in AHL. Conclusions PPAR mediated signaling pathway may be an important mechanism for AHL. Downregulation of the above miRNAs and use of topiramate may be potential treatment strategies for ALH by upregulating PPARG.


1993 ◽  
Vol 36 (6) ◽  
pp. 1276-1285 ◽  
Author(s):  
Sandra Gordon-Salant ◽  
Peter J. Fitzgibbons

This study investigated factors that contribute to deficits of elderly listeners in recognizing speech that is degraded by temporal waveform distortion. Young and elderly listeners with normal hearing sensitivity and with mild-to-moderate, sloping sensorineural hearing losses were evaluated. Low-predictability (LP) sentences from the Revised Speech Perception in Noise test (R-SPIN) (Bilger, Nuetzel, Rabinowitz, & Rzeczkowski, 1984) were presented to subjects in undistorted form and in three forms of distortion: time compression, reverberation, and interruption. Percent-correct recognition scores indicated that age and hearing impairment contributed independently to deficits in recognizing all forms of temporally distorted speech. In addition, subjects’ auditory temporal processing abilities were assessed on duration discrimination and gap detection tasks. Canonical correlation procedures showed that some of the suprathreshold temporal processing measures, especially gap duration discrimination, contributed to the ability to recognize reverberant speech. The overall conclusion is that age-related factors other than peripheral hearing loss contribute to diminished speech recognition performance of elderly listeners.


Author(s):  
Rachel L. C. Mitchell ◽  
Rachel A. Kingston

It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.


2016 ◽  
Vol 17 (2) ◽  
pp. 68-73
Author(s):  
Dong-Wook Kim ◽  
Tae-Young Lee ◽  
Da-Hye Choi ◽  
Taek-Yeong Kim ◽  
Hyun-Chul Moon

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1686
Author(s):  
Adelaida M. Celaya ◽  
Lourdes Rodríguez-de la Rosa ◽  
Jose M. Bermúdez-Muñoz ◽  
José M. Zubeldia ◽  
Carlos Romá-Mateo ◽  
...  

Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/− mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.


2021 ◽  
pp. 1-10
Author(s):  
Christiane Völter ◽  
Lisa Götze ◽  
Imme Haubitz ◽  
Janine Müther ◽  
Stefan Dazert ◽  
...  

<b><i>Introduction:</i></b> Age-related hearing loss affects about one-third of the population worldwide. Studies suggest that hearing loss may be linked to cognitive decline and auditory rehabilitation may improve cognitive functions. So far, the data are limited, and the underlying mechanisms are not fully understood. The study aimed to analyze the impact of cochlear implantation on cognition in a large homogeneous population of hearing-impaired adults using a comprehensive non-auditory cognitive assessment with regard to normal-hearing (NH) subjects. <b><i>Material and Methods:</i></b> Seventy-one cochlear implant (CI) candidates with a postlingual, bilateral severe or profound hearing loss aged 66.3 years (standard deviation [SD] 9.2) and 105 NH subjects aged 65.96 years (SD 9.4) were enrolled. The computer-based neurocognitive tool applied included 11 subtests covering attention (M3), short- and long-term memory (recall and delayed recall), working memory (0- and 2-back, Operation Span [OSPAN] task), processing speed (Trail Making Test [TMT] A), mental flexibility (TMT B), inhibition (cFlanker and iFlanker), and verbal fluency. CI patients underwent a neurocognitive testing preoperatively as well as 12 months postoperatively. Impact of hearing status, age, gender, and education on cognitive subdomains was studied. Additionally, after controlling for education and age, cognitive performance of CI subjects (<i>n</i> = 41) was compared to that of NH (<i>n</i> = 34). <b><i>Results:</i></b> CI users achieved significantly better neurocognitive scores 12 months after cochlear implantation than before in most subtests (M3, [delayed] recall, 2-back, OSPAN, iFlanker, and verbal fluency; all <i>p</i> &#x3c; 0.05) except for the TMT A and B. A significant correlation could be found between the postoperative improvement in speech perception and in the attentional task M3 (<i>p</i> = 0.01). Hearing status (<i>p</i> = 0.0006) had the strongest effect on attention, whereas education had a high impact on recall (<i>p</i> = 0.002), OSPAN (<i>p</i> = 0.0004), and TMT A (<i>p</i> = 0.005) and B (<i>p</i> = 0.003). Inhibition was mainly age-dependent with better results in younger subjects (<i>p</i> = 0.016). Verbal fluency was predicted by gender as females outperformed men (<i>p</i> = 0.009). Even after controlling for age and education NH subjects showed a significantly better performance than CI candidates in the recall (<i>p</i> = 0.03) and delayed recall (<i>p</i> = 0.01) tasks. Postoperatively, there was no significant difference between the 2 groups anymore. <b><i>Conclusion:</i></b> Impact of cochlear implantation on neurocognitive functions differs according to the cognitive subdomains. Postoperatively, CI recipients performed as good as age- and education-matched NH subjects.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 451-452
Author(s):  
Mary Caroline Yuk ◽  
Rebecca Allen ◽  
Marcia Hay-McCutcheon ◽  
Dana Carroll ◽  
Anne Halli-Tierney

Abstract Age related hearing loss, or presbycusis, is a global condition that is increasing in its prevalence. Despite being one of the most common chronic conditions among the older population, there is much more to understand about its association with other aspects of physical and emotional health and well-being. Current research is suggesting that hearing loss is more prevalent in those with cognitive impairment compared to those without cognitive impairment. This study analyzed the incidence of hearing loss and its linkage to mild cognitive impairment in a community-dwelling geriatric population. With the increasing prevalence of this condition in both rural and urban communities of Alabama, it becomes a more pressing matter to understand comorbidities and risk factors for future decline in functioning. This study was conducted in an interdisciplinary geriatrics primary care outpatient clinic in a Family, Internal, and Rural Medicine department affiliated with a university medical center in the Deep South. Ninety-one participants completed the Montreal Cognitive Assessment (MoCA) and a hearing screening. Hearing screenings were conducted in quiet rooms in the medical center using Phonak hearing screening cards. Detection of 500, 1000, 2000, and 4000 Hz tones was assessed. Pearson correlation analyses demonstrated an association between hearing loss mild cognitive impairment. Poorer hearing was significantly associated with lower scores on the MoCA. Conducting behavioral health screenings like this in other primary geriatrics clinics and community settings could improve care and identification of patient needs by integrating important data regarding comorbidities and independent living.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 214-215
Author(s):  
Rahul Sharma ◽  
Anil Lalwani ◽  
Justin Golub

Abstract The progression and asymmetry of age-related hearing loss has not been well characterized in those 80 years of age and older because public datasets mask upper extremes of age to protect anonymity. We aimed to model the progression and asymmetry of hearing loss in the older old using a representative, national database. This was a cross-sectional, multicentered US epidemiologic analysis using the National Health and Nutrition Examination Study (NHANES) 2005-2006, 2009-2010, and 2011-2012 cycles. Subjects included non-institutionalized, civilian adults 80 years and older (n=621). Federal security clearance was granted to access publicly-restricted age data. Outcome measures included pure-tone average air conduction thresholds and the 4-frequency pure tone average (PTA). 621 subjects were 80 years old or older (mean=84.2 years, range=80-104 years), representing 10,600,197 Americans. Hearing loss exhibited constant acceleration across the adult lifespan at a rate of 0.0052 dB/year2 (95% CI = 0.0049, 0.0055). Compounded over a lifetime, the velocity of hearing loss would increase five-fold, from 0.2 dB loss/year at age 20 to 1 dB loss/year at age 100. This model predicted mean PTA within 2 dB of accuracy for most ages between 20 and 100 years. There was no change in the asymmetry of hearing loss with increasing age over 80 years (linear regression coefficient of asymmetry over age=0.07 (95% CI=-0.01, 0.24). In conclusion, hearing loss steadily and predictably accelerates across the adult lifespan to at least age 100, becoming near-universal. These population-level statistics will guide treatment and policy recommendations for hearing health in the older old.


Sign in / Sign up

Export Citation Format

Share Document