Male-mediated introgression of Bos indicus genes into Argentine and Bolivian Creole cattle breeds

2000 ◽  
Vol 31 (5) ◽  
pp. 302-305 ◽  
Author(s):  
G Giovambattista ◽  
M V Ripoli ◽  
J C De Luca ◽  
P M Mirol ◽  
J P Lirón ◽  
...  
2011 ◽  
Vol 82 (6) ◽  
pp. 717-721 ◽  
Author(s):  
Makoto KANEDA ◽  
Bang Zhong LIN ◽  
Shinji SASAZAKI ◽  
Kenji OYAMA ◽  
Hideyuki MANNEN

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
N. Z. Gebrehiwot ◽  
E. M. Strucken ◽  
H. Aliloo ◽  
K. Marshall ◽  
J. P. Gibson

Abstract Background Humpless Bos taurus cattle are one of the earliest domestic cattle in Africa, followed by the arrival of humped Bos indicus cattle. The diverse indigenous cattle breeds of Africa are derived from these migrations, with most appearing to be hybrids between Bos taurus and Bos indicus. The present study examines the patterns of admixture, diversity, and relationships among African cattle breeds. Methods Data for ~ 40 k SNPs was obtained from previous projects for 4089 animals representing 35 African indigenous, 6 European Bos taurus, 4 Bos indicus, and 5 African crossbred cattle populations. Genetic diversity and population structure were assessed using principal component analyses (PCA), admixture analyses, and Wright’s F statistic. The linkage disequilibrium and effective population size (Ne) were estimated for the pure cattle populations. Results The first two principal components differentiated Bos indicus from European Bos taurus, and African Bos taurus from other breeds. PCA and admixture analyses showed that, except for recently admixed cattle, all indigenous breeds are either pure African Bos taurus or admixtures of African Bos taurus and Bos indicus. The African zebu breeds had highest proportions of Bos indicus ancestry ranging from 70 to 90% or 60 to 75%, depending on the admixture model. Other indigenous breeds that were not 100% African Bos taurus, ranged from 42 to 70% or 23 to 61% Bos indicus ancestry. The African Bos taurus populations showed substantial genetic diversity, and other indigenous breeds show evidence of having more than one African taurine ancestor. Ne estimates based on r2 and r2adj showed a decline in Ne from a large population at 2000 generations ago, which is surprising for the indigenous breeds given the expected increase in cattle populations over that period and the lack of structured breeding programs. Conclusion African indigenous cattle breeds have a large genetic diversity and are either pure African Bos taurus or admixtures of African Bos taurus and Bos indicus. This provides a rich resource of potentially valuable genetic variation, particularly for adaptation traits, and to support conservation programs. It also provides challenges for the development of genomic assays and tools for use in African populations.


2006 ◽  
Vol 89 (12) ◽  
pp. 4921-4923 ◽  
Author(s):  
M. Ron ◽  
M. Cohen-Zinder ◽  
C. Peter ◽  
J.I. Weller ◽  
G. Erhardt

Gene ◽  
2013 ◽  
Vol 519 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Guillermo Giovambattista ◽  
Shin-nosuke Takeshima ◽  
Maria Veronica Ripoli ◽  
Yuki Matsumoto ◽  
Luz Angela Alvarez Franco ◽  
...  

2010 ◽  
Vol 49 (1-2) ◽  
pp. 39-45 ◽  
Author(s):  
M. Sodhi ◽  
M. Mukesh ◽  
B. P. Mishra ◽  
K. Parvesh ◽  
B. K. Joshi

Author(s):  
A. S. Kramarenko

The Southern Meat cattle is a composite breed developed by crossing Cuban zebu (Bos indicus) with different cattle breeds (Bos taurus) – local the Red Steppe, Hereford, Charolais, Santa Gertrudis, Dairy Shorthorn. Genetic structure of the Southern meat cattle breed from the State Enterprise Experimental Farm “Askaniyske” NAAS Ukraine (Kherson region) were investigated based on the microsatellite DNA loci. Analysis included 192 animals. A panel of 12 bovine-specific microsatellite markers (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH3, ETH225 and BM1824), recommended of the ISAG for cattle genetic diversity studies, was selected for genetic characterization and revealing the extent of genetic diversity in the Southern Meat cattle breed. Genomic DNA was extracted from tissue samples using Nexttec column (Nexttec Biotechnology GmbH, Germany) following the manufacturer's instructions. All laboratory tests were conducted in the laboratory of Molecular Genetics, Animal Center of Biotechnology and Molecular Diagnostics, All-Russian Research Institute for Animal Husbandry named after academy member L.K. Ernst. We report the distribution and the frequency of a taurine and an indicine specific alleles in the Southern Meat cattle breed using literature data about the Zebu and different cattle breeds genetic structure based on microsatellite loci from our list. It can be assumed that the TGLA22777, BM2113141-143, ETH10209-211, TGLA122149, INRA23194-198, TGLA126123, ETH225156-158-160 alleles among the Southern Meat cattle breed examined individuals were inherited from a B. indicus ancestor. On the other hand, the TGLA53156, ETH10217-219, TGLA122143, INRA23202, TGLA126115, ETH225148-150, BM1824188-190 alleles in the Southern Meat cattle gene pool may be inherited from a B. taurus ancestor (i.e., taurine breeds diagnostic alleles).


Genome ◽  
2021 ◽  
Author(s):  
Periyasamy Vijayakumar ◽  
Arunasalam Singaravadivelan ◽  
Anamika Mishra ◽  
Krishnan Jagadeesan ◽  
Sanniyasi Bakyaraj ◽  
...  

The Bos indicus cattle breeds have been naturally selected over thousands of years for disease resistance and thermo-tolerance. However, a genetic mechanism of these specific inherited characteristics needs to be discovered. Hence, in this study, the whole-genome comparative analysis of Bos indicus cattle breeds of Kangayam, Tharparkar, Sahiwal, Red Sindhi, and Hariana of the Indian subcontinent was conducted. The genetic variants identification analysis revealed a total of 15,58,51,012 SNPs and 1,00,62,805 InDels in the mapped reads across all Bos indicus cattle breeds. The functional annotation of 17,252 genes that comprised both, SNPs and InDels, of high functional impact on proteins, has been carried out. The functional annotation results revealed the pathways that were involved in the innate immune response including toll-like receptors, a retinoic acid-inducible gene I like receptors, NOD-like receptors, Jak-STAT signaling pathways, and the non-synonymous variants in the candidate immune genes. Further, we also identified several pathways involved in heat shock response, hair and skin properties, oxidative stress response, osmotic stress response, thermal sweating, feed intake, metabolism, and the non-synonymous variants in the candidate thermo-tolerant genes. These pathways and genes were directly or indirectly contributing to the disease resistance and thermo-tolerance adaptations of Bos indicus cattle breeds.


2020 ◽  
Author(s):  
Archile Eric paguem ◽  
Babette Abanda ◽  
Mbunkah Daniel Achukwi ◽  
Praveen Baskaran ◽  
Stefan Czemmel ◽  
...  

Abstract BackgroundWest African indigenous taurine cattle display unique adaptive traits shaped by husbandry management, regional climate and exposure to endemic pathogens. They are less productive with respect to milk and meat production which has been associated with a number of factors, amongst others small size, traditional beliefs and husbandry practices. This resulted in the severe dwindling of their populations size rendering them vulnerable to extinction. The Namchi (Doayo) taurine cattle breed has documented resistance traits against trypanosome infection and exposure to tick infestation. Nonetheless, the historically later introduced Zebu cattle are the main cattle breeds in Africa today, even though they suffer more from locally prevailing pathogens. By using a reference-based whole genome sequencing approach, we sequenced for the first time the genomes of five cattle breeds from Cameroon: the Namchi (Doayo), an endangered trypanotolerant taurine breed, the Kapsiki, an indigenous trypanosusceptible taurine breed, and three Zebu (Bos indicus indicus) breeds: Ngaoundere Gudali, White Fulani and Red Fulani.ResultsApproximately 167 Giga bases of raw sequencing data were generated and mapped to the cattle reference genome UMD3.1. The coverage was 22 to 30-fold. The single nucleotide polymorphisms (SNPs) were compared with reference genomes of European Bos taurus Holstein and of Asian Bos indicus Brahman and the African trypanotolerant N’Dama breeds.Of a total of 50 million SNPs identified, 3.43 million were breed-specific ranging from 0.37 to 0.47 million SNPs in the domestic Cameroonian breeds and approximately 0.58 million constituted of small insertions and deletions. We identified breed specific-non-synonymous variants as genetic traits that could explain certain cattle-breed specific phenotypes such as increased tolerance against trypanosome parasites in the Namchi (Doayo) breed, heat tolerance in the Kapsiki breed, and growth, metabolism and meat quality in the Gudali breeds. Phylogenetic comparison grouped Namchi (Doayo) to the African Zebu clade indicating a hybrid status of the selected animal with a Zebu breed, albeit it showed the Namchi breed’s phenotype.ConclusionsThe findings provide the first comprehensive set of full genome variant data of the most important Cameroonian cattle breeds. The genomic data shall constitute a foundation for breed amelioration whilst exploiting the heritable traits and support conservation efforts for the endangered local cattle breeds.


Sign in / Sign up

Export Citation Format

Share Document