scholarly journals Whole genome characterization of autochthonous Bos taurus brachyceros and introduced Bos indicus indicus cattle breeds in Cameroon regarding their adaptive phenotypic traits and pathogen resistance

2020 ◽  
Author(s):  
Archile Eric paguem ◽  
Babette Abanda ◽  
Mbunkah Daniel Achukwi ◽  
Praveen Baskaran ◽  
Stefan Czemmel ◽  
...  

Abstract BackgroundWest African indigenous taurine cattle display unique adaptive traits shaped by husbandry management, regional climate and exposure to endemic pathogens. They are less productive with respect to milk and meat production which has been associated with a number of factors, amongst others small size, traditional beliefs and husbandry practices. This resulted in the severe dwindling of their populations size rendering them vulnerable to extinction. The Namchi (Doayo) taurine cattle breed has documented resistance traits against trypanosome infection and exposure to tick infestation. Nonetheless, the historically later introduced Zebu cattle are the main cattle breeds in Africa today, even though they suffer more from locally prevailing pathogens. By using a reference-based whole genome sequencing approach, we sequenced for the first time the genomes of five cattle breeds from Cameroon: the Namchi (Doayo), an endangered trypanotolerant taurine breed, the Kapsiki, an indigenous trypanosusceptible taurine breed, and three Zebu (Bos indicus indicus) breeds: Ngaoundere Gudali, White Fulani and Red Fulani.ResultsApproximately 167 Giga bases of raw sequencing data were generated and mapped to the cattle reference genome UMD3.1. The coverage was 22 to 30-fold. The single nucleotide polymorphisms (SNPs) were compared with reference genomes of European Bos taurus Holstein and of Asian Bos indicus Brahman and the African trypanotolerant N’Dama breeds.Of a total of 50 million SNPs identified, 3.43 million were breed-specific ranging from 0.37 to 0.47 million SNPs in the domestic Cameroonian breeds and approximately 0.58 million constituted of small insertions and deletions. We identified breed specific-non-synonymous variants as genetic traits that could explain certain cattle-breed specific phenotypes such as increased tolerance against trypanosome parasites in the Namchi (Doayo) breed, heat tolerance in the Kapsiki breed, and growth, metabolism and meat quality in the Gudali breeds. Phylogenetic comparison grouped Namchi (Doayo) to the African Zebu clade indicating a hybrid status of the selected animal with a Zebu breed, albeit it showed the Namchi breed’s phenotype.ConclusionsThe findings provide the first comprehensive set of full genome variant data of the most important Cameroonian cattle breeds. The genomic data shall constitute a foundation for breed amelioration whilst exploiting the heritable traits and support conservation efforts for the endangered local cattle breeds.

2020 ◽  
Author(s):  
Archile Eric Paguem ◽  
Babette Abanda ◽  
Mbunkah Daniel Achukwi ◽  
Praveen Baskaran ◽  
Stefan Czemmel ◽  
...  

Abstract Background:West African indigenous taurine cattle display unique adaptive traits shaped by husbandry management, regional climate and exposure to endemic pathogens. They are less productive with respect to milk and meat production which has been associated with amongst others, small size, traditional beliefs and husbandry practices. This resulted in the severe dwindling of their population size rendering them vulnerable to extinction. The Namchi taurine cattle breed is referred to as [Namchi (Doayo)] and shows resistance traits against trypanosome infection and exposure to tick infestation. Nonetheless, the historically later introduced Zebu cattle are the main cattle breeds in Africa today, even though they suffer more from locally prevailing pathogens. By using a reference-based whole genome sequencing approach, we sequenced with high depth for the first time the genomes of five cattle breeds from Cameroon in order to provide a valuable genetic resource for future African cattle breeding: the Namchi , an endangered trypano-tolerant taurine breed, the Kapsiki, an indigenous trypano-susceptible taurine breed, and three Zebu (Bos indicus indicus) breeds: Ngaoundere Gudali, White Fulani and Red Fulani.Results: Approximately 167 Gigabases of raw sequencing data were generated for each breed and mapped to the cattle reference genomes ARS-UCD1.2 and UMD3.1.The coverage was 103 to 140-fold when aligning the reads to ARS-UCD1.2 with an average mapping rate of ~99%, and 22 to 30-fold when aligning the reads to UMD3.1 with an average mapping rate of ~64%. The single nucleotide polymorphisms (SNPs) obtained from analysis using the genome ARS-UCD1.2 were compared with reference genomes of European Bos taurus Holstein, the Asian Bos indicus Brahman, and the African trypanotolerant N’Dama breeds.A total of ~100 million (M) SNPs were identified and 7.7 M of those were breed-specific. Approximately 11.1 M constituted of small insertions and deletions. By using only breed-specific non-synonymous variants we identified genes as genetic traits and associated Gene Ontology (GO) terms that could explain certain cattle-breed specific phenotypes such as increased tolerance against trypanosome parasites in the Namchi breed and heat tolerance in the Kapsiki breed. Phylogenetic analysis grouped, except for Namchi, the Bos taurus breeds Kapsiki, N’Dama and Holstein together while the B. indicus breeds White and Red Fulani, Gudali and Brahman clustered separately. The deviating result for Namchi indicates a hybrid status of the selected animal with a recent introgression of Zebu genes into its genome.Conclusions:The findings provide the first comprehensive set of genome-wide variant data of the most important Cameroonian cattle breeds. The genomic data shall constitute a foundation for breed amelioration whilst exploiting the heritable traits and support conservation efforts for the endangered local cattle breeds.


2020 ◽  
Author(s):  
Archile Eric Paguem ◽  
Babette Abanda ◽  
Mbunkah Daniel Achukwi ◽  
Praveen Baskaran ◽  
Stefan Czemmel ◽  
...  

Abstract Background: West African indigenous taurine cattle display unique adaptive traits shaped by husbandry management, regional climate and exposure to endemic pathogens. They are less productive with respect to milk and meat production which has been associated with amongst others, small size, traditional beliefs and husbandry practices. This resulted in the severe dwindling of their population size rendering them vulnerable to extinction. The Namchi taurine cattle breed is referred to as [Namchi (Doayo)] and shows resistance traits against trypanosome infection and exposure to tick infestation. Nonetheless, the historically later introduced Zebu cattle are the main cattle breeds in Africa today, even though they suffer more from locally prevailing pathogens. By using a reference-based whole genome sequencing approach, we sequenced with high depth for the first time the genomes of five cattle breeds from Cameroon in order to provide a valuable genetic resource for future African cattle breeding: the Namchi , an endangered trypano-tolerant taurine breed, the Kapsiki, an indigenous trypano-susceptible taurine breed, and three Zebu (Bos indicus indicus) breeds: Ngaoundere Gudali, White Fulani and Red Fulani.Results: Approximately 167 Gigabases of raw sequencing data were generated for each breed and mapped to the cattle reference genomes ARS-UCD1.2 and UMD3.1.The coverage was 103 to 140-fold when aligning the reads to ARS-UCD1.2 with an average mapping rate of ~99%, and 22 to 30-fold when aligning the reads to UMD3.1 with an average mapping rate of ~64%. The single nucleotide polymorphisms (SNPs) obtained from analysis using the genome ARS-UCD1.2 were compared with reference genomes of European Bos taurus Holstein, the Asian Bos indicus Brahman, and the African trypanotolerant N’Dama breeds.A total of ~100 million (M) SNPs were identified and 7.7 M of those were breed-specific. An approximately 11.1 M constituted of small insertions and deletions. By using only breed-specific non-synonymous variants we identified genes as genetic traits and associated Gene Ontology (GO) terms that could explain certain cattle-breed specific phenotypes such as increased tolerance against trypanosome parasites in the Namchi breed and heat tolerance in the Kapsiki breed. Phylogenetic analysis grouped, except for Namchi, the Bos taurus breeds Kapsiki, N’Dama and Holstein together while the B. indicus breeds White and Red Fulani, Gudali and Brahman clustered separately. The deviating result for Namchi indicates a hybrid status of the selected animal with a recent introgression of Zebu genes into its genome. Conclusions: The findings provide the first comprehensive set of genome-wide variant data of the most important Cameroonian cattle breeds. The genomic data shall constitute a foundation for breed amelioration whilst exploiting the heritable traits and support conservation efforts for the endangered local cattle breeds.


2006 ◽  
Vol 41 (11) ◽  
pp. 1609-1615 ◽  
Author(s):  
Érica Cunha Issa ◽  
Wilham Jorge ◽  
José Robson Bezerra Sereno

The objective of this work was to characterize Pantaneiro cattle genetically through its paternal ancestry by the morphology of the Y chromosome, whether submetacentric or acrocentric, as well as to identify the maternal ancestry through mitochondrial DNA. The karyotype and mitochondrial DNA of 12 bulls of Pantaneiro breed were analyzed. The Y chromosome was analyzed in lymphocyte metaphases and the mitochondrial DNA by diagnosing its haplotype (Bos taurus and Bos indicus). Among Pantaneiro animals analyzed three had a taurine (submetacentric) Y and nine had a zebuine (acrocentric) Y chromosome, suggesting breed contamination by Zebu cattle, once Pantaneiro is considered to be of European origin. The mitochondrial DNA was exclusively of taurine origin, indicating that the participation of zebuines in the formation of the breed occurred entirely through the paternal line.


Author(s):  
A. S. Kramarenko

The Southern Meat cattle is a composite breed developed by crossing Cuban zebu (Bos indicus) with different cattle breeds (Bos taurus) – local the Red Steppe, Hereford, Charolais, Santa Gertrudis, Dairy Shorthorn. Genetic structure of the Southern meat cattle breed from the State Enterprise Experimental Farm “Askaniyske” NAAS Ukraine (Kherson region) were investigated based on the microsatellite DNA loci. Analysis included 192 animals. A panel of 12 bovine-specific microsatellite markers (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH3, ETH225 and BM1824), recommended of the ISAG for cattle genetic diversity studies, was selected for genetic characterization and revealing the extent of genetic diversity in the Southern Meat cattle breed. Genomic DNA was extracted from tissue samples using Nexttec column (Nexttec Biotechnology GmbH, Germany) following the manufacturer's instructions. All laboratory tests were conducted in the laboratory of Molecular Genetics, Animal Center of Biotechnology and Molecular Diagnostics, All-Russian Research Institute for Animal Husbandry named after academy member L.K. Ernst. We report the distribution and the frequency of a taurine and an indicine specific alleles in the Southern Meat cattle breed using literature data about the Zebu and different cattle breeds genetic structure based on microsatellite loci from our list. It can be assumed that the TGLA22777, BM2113141-143, ETH10209-211, TGLA122149, INRA23194-198, TGLA126123, ETH225156-158-160 alleles among the Southern Meat cattle breed examined individuals were inherited from a B. indicus ancestor. On the other hand, the TGLA53156, ETH10217-219, TGLA122143, INRA23202, TGLA126115, ETH225148-150, BM1824188-190 alleles in the Southern Meat cattle gene pool may be inherited from a B. taurus ancestor (i.e., taurine breeds diagnostic alleles).


1997 ◽  
Vol 21 ◽  
pp. 35-42 ◽  
Author(s):  
T. A. Mohammed

SummaryHassawi cattle breed is a mix of Bos indicus and Bos taurus. The cattle are raised in the Eastern province of the country by farming families in mixed farming system. The breed numbers are declining very fast, from 10 449 head in 1986 to an estimated maximum of 4 500 head at present.The decrease is mainly due to replacement by exotic breeds, the indiscriminate crossing with these exotics, particularly in view of the scarcity of the Hassawi bulls for mating. Animals are small in size, mature body weight 210-270 kg for bulls and 150-200 kg for cows, quite uniform in colour (light red) and body conformation have conspicuously reduced dewlap and umbilical folds and relatively large hump. Animals are heat tolerant, sustain high feed intake under ambient temperature, resistant to many diseases prevailing in the region and cows have good mothering ability. Productivity of the breed in terms of meat and milk is low when compared to that of exotics in high input production environments, but reproduction performance excels that of temperate breeds and zebu cattle.Efforts should be made to stop the decline in the breed numbers and to conserve the breed as an asset for production under harsh environment.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 1071-1086 ◽  
Author(s):  
David E MacHugh ◽  
Mark D Shriver ◽  
Ronan T Loftus ◽  
Patrick Cunningham ◽  
Daniel G Bradley

Genetic variation at 20 microsatellite loci was surveyed to determine the evolutionary relationships and molecular biogeography of 20 different cattle populations from Africa, Europe and Asia. Phylogenetic reconstruction and multivariate analysis highlighted a marked distinction between humpless (taurine) and humped (zebu) cattle, providing strong support for a separate origin for domesticated zebu cattle. A molecular clock calculation using bison (Bison sp.) as an outgroup gave an estimated divergence time between the two subspecies of 610,000-850,000 years. Substantial differences in the distribution of alleles at 10 of these loci were observed between zebu and taurine cattle. These markers subsequently proved very useful for investigations of gene flow and admixture in African populations. When these data were considered in conjunction with previous mitochondrial and Y chromosomal studies, a distinctive male-mediated pattern of zebu genetic introgression was revealed. The introgression of zebu-specific alleles in African cattle afforded a high resolution perspective on the hybrid nature of African cattle populations and also suggested that certain West African populations of valuable disease-tolerant taurine cattle are under threat of genetic absorption by migrating zebu herds.


Author(s):  
R.M. Al-Atiyat ◽  
R.S. Aljumaah ◽  
A.M. Abudabos ◽  
A.A. Alghamdi ◽  
A.S. Alharthi ◽  
...  

SummaryThis study aims to evaluate the current situation and diversity of indigenous cattle breeds in the Kingdom of Saudi Arabia (KSA). A survey was executed in five regions of the KSA. We recorded population sizes, phenotypes and rearing conditions. TaurineBos taurusand zebuBos indicuspopulations were found. The zebu cattle include two breeds; the Hassawi and the Janobi. The Hassawi breed was found in the eastern region and it is in decreasing number. It may become extinct soon in the absence of conservation plan. Janobi remains common with thousand animals in the south-western part of the country. Only one indigenous taurine cow, showing no phenotypic evidence of zebu introgression, was found in the Central region of KSA (Najd Plateau). This cow might be the last pure indigenous Saudi Arabia taurine animal and therefore, the breed is now close to extinction. We advocate the urgency to design conservation plan for the indigenous livestock of the KSA and to complement these with phenotypic as well as genotypic information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lihua Jiang ◽  
Tetsuo Kon ◽  
Chunyan Chen ◽  
Ryota Ichikawa ◽  
Qiyuan Zheng ◽  
...  

AbstractZhoushan cattle are an endangered cattle breed in the Zhoushan islands in China. Since Zhoushan cattle have been bred in isolation, they show unique characteristics, such as dark black coat colour. However, no studies have been conducted on the genome of Zhoushan cattle. Here, we performed whole-genome sequencing of seven individuals of Zhoushan cattle and nine cattle in Wenling, geographically close to the Zhoushan islands. By integrating our data and publicly-available data, we found that Zhoushan cattle are genetically highly similar to Bos indicus cattle in south-eastern China. Furthermore, by identifying the genomic regions shared between Zhoushan cattle and Angus cattle, a Bos taurus breed, we found that the p.F195L mutation in melanocyte-stimulating hormone receptor (MC1R) could be associated with their dark black coat colour. Taken together, our results provide a valuable resource for characterising the uniqueness of Zhoushan cattle.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Gobena Ameni ◽  
Paul Cockle ◽  
Konstantin Lyashchenko ◽  
Martin Vordermeier

Higher IFN-γresponses to mycobacterial antigens were observed inBos taurus(Holsteins) than inBos indicus(Zebu) cattle which could due to differences in antigen recognition profiles between the two breeds. The present study was conducted to evaluate mycobacterial antigen recognition profiles of the two breeds. Twenty-three mycobacterial antigens were tested on 46 skin test positive (24 Zebu and 22 Holstein) using enzyme-linked immunospot assay (ELISPOT) and multiple antigen print immunoassay (MAPIA). Herds from which the study cattle obtained were tested for Fasciola antibody. The T cells from both breeds recognized most of the mycobacterial antigens at lower and comparable frequencies. However, antigens such as CFP-10, ESAT-6, Rv0287, Rv0288, MPB87, Acr-2, Rv3616c, and Rv3879c were recognized at higher frequencies in zebu while higher frequencies of T cell responses were observed to Hsp65 in both breeds. Furthermore, comparable antibody responses were observed in both breeds; MPB83 being the sero-dominant antigen in both breeds. The prevalence of Fasciola antibody was 81% and similar in both breeds. This piece of work could not lead to a definitive conclusion if there are differences in mycobacterial recognition profiles between the two breeds warranting for further similar studies using sound sample size from the two breeds.


Sign in / Sign up

Export Citation Format

Share Document