Evaluation of immunotoxins containing single-chain ribosome-inactivating proteins and an anti-CD22 monoclonal antibody (OM124): in vitro and in vivo studies

1998 ◽  
Vol 101 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Andrea Bolognesi ◽  
Pier Luigi Tazzari ◽  
Fabiola Olivieri ◽  
Letizia Polito ◽  
Roberto Lemoli ◽  
...  
Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 1981-1988
Author(s):  
Bijia Deng ◽  
Naheed Banu ◽  
Beth Malloy ◽  
Philip Hass ◽  
Jian Feng Wang ◽  
...  

Thrombopoietin (TPO) is a hematopoietic growth factor that stimulates megakaryocytopoiesis and platelet production in vivo and promotes the development of identifiable megakaryocytes in vitro. We have developed a murine monoclonal antibody, BAH-1, raised against human megakaryocytic cells, which specifically recognizes the c-Mpl receptor and shows agonist activity by stimulating megakaryocytopoiesis in vitro. BAH-1 antibody specifically binds to platelets and to recombinant c-Mpl with high affinity. Similar to TPO, BAH-1 alone supported the formation of colony-forming unit-megakaryocyte (CFU-MK) colonies. The combination of BAH-1 plus interleukin-3 or of BAH-1 plus human TPO significantly increased the number of human CFU-MK colonies. In addition, BAH-1 monoclonal antibody stimulated the proliferation and maturation of primary bone marrow megakaryocytes in a dynamic heterogeneous liquid culture system. Individual large megakaryocytes as well as small megakaryocytic cells were observed in cultures of CD34+ CD41+cells in the presence of BAH-1 antibodies. Similar to TPO, BAH-1 antibody induced a significant response of murine immature megakaryocytes as observed by an increase in the detectable numbers of acetylcholinesterase-positive megakaryocytes. No effects of BAH-1 antibody were observed on colony-forming unit–granulocyte-macrophage, burst-forming unit-erythroid, or colony-forming unit-erythroid colonies. In vivo studies showed that BAH-1, alone or in combination with TPO, expands the numbers of megakaryocytic progenitor cells in myelosuppressed mice. This antibody should prove useful in understanding the structure-function aspects of the c-Mpl receptor as well as in evaluating the effects of the sustained activation of this receptor in preclinical models of severe thrombocytopenia. © 1998 by The American Society of Hematology.


2008 ◽  
Vol 15 (5) ◽  
pp. 737-743 ◽  
Author(s):  
Kalpana Surendranath ◽  
Anjali A. Karande

ABSTRACT Plant ribosome-inactivating proteins (RIPs) are RNA N-glycosidases that inhibit protein synthesis in cells. Abrin, a type II RIP, is an AB type toxin, which is one of the most lethal types of toxin known. The B chain facilitates the entry of the molecule into the cell, whereas the A chain exerts the toxic effect. We have generated hybridomas secreting antibodies of the immunoglobulin G class specific to the recombinant A chain of abrin. One monoclonal antibody, namely, D6F10, rescued cells from abrin toxicity. Importantly, the antibody also protected mice from lethal doses of the toxin. The neutralizing effect of the antibody was shown to be due to interference with abrin attachment to the cell surface.


Author(s):  
O. Cohen-Inbar

Glioblastoma Multiforme is the most common malignant primary brain tumor, having a mean overall survival <2 years. The lack of an efficient immune response against the tumor have been attributed to its immunosuppressive capabilities and an immunosuppressing local environment. Aim: We set out to design a chimeric molecule that recognizes and binds tissue inducible metalloproteinase known to be induced in GBM cells (MMP-2) on one end. Its other end, the effector domain, mobilizes and recruits cytotoxic T-cells to mount an effective anti-tumor reaction. Methods: The targeting moiety is the small 36-amino acids Chlorotoxin, derived from the venom of the Israeli Yellow scorpion. The effector end is a single chain HLA-A2 (Human leukocyte antigen subtype A2) covalently bound to phosphoprotein-65 derived from the cytomegalovirus, to which most of the human population has developed a specific immune response. Results: The molecular construct was cloned and expressed in E.coli. The protein product was isolated, purified, and then folded in vitro. Various activity assays employed demonstrated retained activity of each domain, including flow-cytometry, intracellular staining, fluorescence immunohistochemistry, radiolabeled toxicity assays etc. Initial in-vivo studies show great promise. Conclusions: We present a proof of concept study for a new immunotherapy approach to battle GBM. A molecular construct which contains a non-antibody compact and highly specific targeting domain, combined with the ability to recruit anti-CMV T-cell lymphocyte population. The recruitment of potent memory CTL’s to the tumor’s milieu may prove resistant to the previously described local immunosuppressive environment brought about by the tumor.


1983 ◽  
Vol 97 (5) ◽  
pp. 1467-1475 ◽  
Author(s):  
J Wehland ◽  
M C Willingham ◽  
I V Sandoval

The antigenic site recognized by a rat monoclonal antibody (clone YL 1/2) reacting with alpha-tubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) has been determined and partially characterized. YL 1/2 reacts specifically with the tyrosylated form of brain alpha-tubulin from different mammalian species. YL 1/2 reacts with the synthetic peptide Gly-(Glu)3-Gly-(Glu)2-Tyr, corresponding to the carboxyterminal amino acid sequence of tyrosylated alpha-tubulin, but does not react with Gly-(Glu)3-Gly-(Glu)2, the constituent peptide of detyrosylated alpha-tubulin. Electron microscopy as well as direct and indirect immunofluorescence microscopy shows that YL 1/2 binds to the surface of microtubules polymerized in vitro and in vivo. Further in vitro studies show that the antibody has no effect on the rate and extent of microtubule polymerization, the stability of microtubules, and the incorporation of the microtubule-associated proteins (MAP2) and tau into microtubules. In vivo studies using Swiss 3T3 fibroblasts injected with YL 1/2 show that; when injected at low concentration (2 mg IgG/ml in the injection solution), the antibody binds to microtubules without changing their distribution in the cytoplasm. Injection of larger concentration of YL 1/2 (6 mg IgG/ml) induces the formation of microtubule bundles, and still higher concentrations cause the aggregation of microtubule bundles around the nucleus (greater than 12 mg IgG/ml).


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 1981-1988 ◽  
Author(s):  
Bijia Deng ◽  
Naheed Banu ◽  
Beth Malloy ◽  
Philip Hass ◽  
Jian Feng Wang ◽  
...  

Abstract Thrombopoietin (TPO) is a hematopoietic growth factor that stimulates megakaryocytopoiesis and platelet production in vivo and promotes the development of identifiable megakaryocytes in vitro. We have developed a murine monoclonal antibody, BAH-1, raised against human megakaryocytic cells, which specifically recognizes the c-Mpl receptor and shows agonist activity by stimulating megakaryocytopoiesis in vitro. BAH-1 antibody specifically binds to platelets and to recombinant c-Mpl with high affinity. Similar to TPO, BAH-1 alone supported the formation of colony-forming unit-megakaryocyte (CFU-MK) colonies. The combination of BAH-1 plus interleukin-3 or of BAH-1 plus human TPO significantly increased the number of human CFU-MK colonies. In addition, BAH-1 monoclonal antibody stimulated the proliferation and maturation of primary bone marrow megakaryocytes in a dynamic heterogeneous liquid culture system. Individual large megakaryocytes as well as small megakaryocytic cells were observed in cultures of CD34+ CD41+cells in the presence of BAH-1 antibodies. Similar to TPO, BAH-1 antibody induced a significant response of murine immature megakaryocytes as observed by an increase in the detectable numbers of acetylcholinesterase-positive megakaryocytes. No effects of BAH-1 antibody were observed on colony-forming unit–granulocyte-macrophage, burst-forming unit-erythroid, or colony-forming unit-erythroid colonies. In vivo studies showed that BAH-1, alone or in combination with TPO, expands the numbers of megakaryocytic progenitor cells in myelosuppressed mice. This antibody should prove useful in understanding the structure-function aspects of the c-Mpl receptor as well as in evaluating the effects of the sustained activation of this receptor in preclinical models of severe thrombocytopenia. © 1998 by The American Society of Hematology.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


Sign in / Sign up

Export Citation Format

Share Document