scholarly journals Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway

1996 ◽  
Vol 10 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Kay A. Lawton ◽  
Leslie Friedrich ◽  
Michelle Hunt ◽  
Kris Weymann ◽  
Terrance Delaney ◽  
...  
2020 ◽  
Vol 145 ◽  
pp. 01038
Author(s):  
Pan Wang ◽  
Meiqin Xiang

Salicylic acid (SA) is considered to be an endogenous signal molecule in plants, and it is related to many resistances in plants. In Arabidopsis, Non-expressor of pathogenesis-related gene1 (NPR1) mediates the expression of pathogenesis-related genes (PRs) and systemic acquired resistance (SAR) induced by SA. NPR1 is a key factor in SA signaling pathway, and the research shows that NPR1, NPR3 and NPR4 play a key role in SA mediated plant disease resistance. In this review, the interaction between NPR and transcription factors is discussed, and we also describe the progress of NPR in SA mediated SAR signal transduction pathway, likewise, we introduce the relationship between NPR1 and its paralogues NPR3/NPR4. This paper analyzes the research prospect of NPR as the intersection of multiple signal paths.


1997 ◽  
Vol 10 (5) ◽  
pp. 531-536 ◽  
Author(s):  
Michelle D. Hunt ◽  
Terrence P. Delaney ◽  
Robert A. Dietrich ◽  
Kris B. Weymann ◽  
Jeffery L. Dangl ◽  
...  

In many interactions of plants with pathogens, the primary host defense reaction is accompanied by plant cell death at the site of infection. The resulting lesions are correlated with the establishment of an inducible resistance in plants called systemic acquired resistance (SAR), for which salicylic acid (SA) accumulation is a critical signaling event in Arabidopsis and tobacco. In Arabidopsis, the lesions simulating disease (lsd) mutants spontaneously develop lesions in the absence of pathogen infection. Furthermore, lsd mutants express SAR marker genes when lesions are present and are resistant to the same spectrum of pathogens as plants activated for SAR by necrogenic pathogen infection. To assess the epistatic relationship between SA accumulation and cell death, transgenic Arabidopsis unable to accumulate SA due to the expression of the salicylate hydroxylase (nahG) gene were used in crosses with the dominant mutants lsd2 or lsd4. Progeny from the crosses were inhibited for SAR gene expression and disease resistance. However, these progeny retained the spontaneous cell death phenotype similar to siblings not expressing nahG. Because lesions form in the absence of SA accumulation for lsd2 and lsd4, a model is suggested in which lesion formation in these two mutants is determined prior to SA accumulation in SAR signal transduction. By contrast, the loss of SAR gene expression and disease resistance in nahG-expressing lsd mutants indicates that these traits are dependent upon SA accumulation in the SAR signal transduction pathway.


Sign in / Sign up

Export Citation Format

Share Document