scholarly journals Stimulation of premature retinoic acid synthesis in Xenopus embryos following premature expression of aldehyde dehydrogenase ALDH1

1999 ◽  
Vol 260 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Hwee Luan Ang ◽  
Gregg Duester
1999 ◽  
Vol 339 (2) ◽  
pp. 387-395 ◽  
Author(s):  
Lily C. HSU ◽  
Wen-Chung CHANG ◽  
Ines HOFFMANN ◽  
Gregg DUESTER

Mammalian class I aldehyde dehydrogenase (ALDH1) has been implicated as a retinal dehydrogenase in the biosynthesis of retinoic acid, a modulator of gene expression and cell differentiation. As the first step towards studying the regulation of ALDH1 and its physiological role in the biosynthesis of retinoic acid, mouse ALDH1 cDNA and genomic clones have been characterized. During the cloning process, an additional closely related gene was also isolated and named Aldh-pb, owing to its high amino acid sequence identity (92%) with the rat phenobarbitol-inducible ALDH protein (ALDH-PB). Aldh1 spans about 45 kb in length, whereas Aldh-pb spans about 35 kb. Both genes are composed of 13 exons, and the positions of all the exon/intron boundaries are conserved with those of human ALDH1. The promoter regions of Aldh1 and Aldh-pb demonstrate high sequence similarity with those of human ALDH1 and rat ALDH-PB. Expression of Aldh1 and Aldh-pb is tissue-specific, with mRNAs for both genes being found in the liver, lung and testis, but not in the heart, spleen or muscle. Expression of Aldh-pb, but not Aldh1, was also detected at high levels in the kidney. Aldh1 and Aldh-pb encode proteins of 501 amino acids with 90% positional identity. To examine the relative roles of these two enzymes in retinoic acid synthesis in vivo, Xenopus embryos were injected with mRNAs encoding these enzymes to assay the effect on conversion of endogenous retinal into retinoic acid. Injection of ALDH1, but not ALDH-PB, mRNA stimulated retinoic acid synthesis in Xenopus embryos at the blastula stage. Thus our results indicate that Aldh1 can function in retinoic acid synthesis under physiological conditions, but that the closely related Aldh-pb does not share this property.


1972 ◽  
Vol 128 (5) ◽  
pp. 1057-1067 ◽  
Author(s):  
E. D Saggerson

1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.


1999 ◽  
Vol 77 (11) ◽  
pp. 1835-1837 ◽  
Author(s):  
Steven R Scadding

While the effects of exogenous retinoids on amphibian limb regeneration have been studied extensively, the role of endogenous retinoids is not clear. Hence, I wished to investigate the role of endogenous retinoic acid during axolotl limb regeneration. Citral is a known inhibitor of retinoic acid synthesis. Thus, I treated regenerating limbs of the larval axolotl Ambystoma mexicanum with citral. The result of this inhibition of retinoic acid synthesis was that limb regeneration became extremely irregular and hypomorphic, with serious pattern defects, or was inhibited altogether. I conclude that endogenous retinoic acid plays an important role in pattern formation during limb regeneration.


Author(s):  
Helen B. Everts ◽  
Kathleen A. Silva ◽  
Adriana N. Schmidt ◽  
Susan Opalenikx ◽  
F. Jason Duncan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document