A Highly-Decoupling Triangular Tactile Sensor Structure for Three-axial Force Measurement Based on Floating Comb Electrodes

Author(s):  
Chenying Liu ◽  
Xuesong Luo ◽  
Shaoping Wang
Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 708 ◽  
Author(s):  
Min-Sheng Suen ◽  
Rongshun Chen

In this paper, a novel capacitive tactile sensing device has proposed and demonstrated to solve coupling problem within the normal force and shear force by the unique design of electrode shape. In addition, the tactile sensor was added in the measuring capability of torsion sensing compared with traditional capacitive sensor. The perceptive unit of tactile sensor, which was consist of five sensing electrodes to detect three-axial force. The complete tactile sensor composed of a top electrode, a bottom electrode, and a spacer layer. Each capacitive sensing unit comprised a pair of the concentric-shape but different size electrodes (top electrode and bottom electrode). In the future, the proposed tactile sensor can be utilized in the wearable devices, flexible interface, and bionic robotic skins.


2014 ◽  
Vol 134 (3) ◽  
pp. 58-63 ◽  
Author(s):  
Hokuto Yokoyama ◽  
Takeshi Kanashima ◽  
Masanori Okuyama ◽  
Takashi Abe ◽  
Haruo Noma ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alireza Mohammadi ◽  
Ying Tan ◽  
Peter Choong ◽  
Denny Oetomo

AbstractThe majority of existing tactile sensors are designed to measure a particular range of force with a fixed sensitivity. However, some applications require tactile sensors with multiple task-relevant sensitivities at multiple ranges of force sensing. Inspired by the human tactile sensing capability, this paper proposes a novel soft tactile sensor based on mechanical metamaterials which exhibits multiple sensitivity regimes due to the step-by-step locking behaviour of its heterogenous multi-layered structure. By tuning the geometrical design parameters of the collapsible layers, each layer experiences locking behaviour under different ranges of force which provides different sensitivity of the sensor at different force magnitude. The integration of a magnetic-based transduction method with the proposed structure results in high design degrees of freedom for realising the desired contact force sensitivities and corresponding force sensing ranges. A systematic design procedure is proposed to select appropriate design parameters to produce the desired characteristics. Two example designs of the sensor structure were fabricated using widely available benchtop 3D printers and tested for their performance. The results showed the capability of the sensor in providing the desired characteristics in terms of sensitivity and force range and being realised in different shapes, sizes and number of layers in a single structure. The proposed multi-sensitivity soft tactile sensor has a great potential to be used in a wide variety of applications where different sensitivities of force measurement is required at different ranges of force magnitudes, from robotic manipulation and human–machine interaction to biomedical engineering and health-monitoring.


2015 ◽  
Vol 76 (1) ◽  
Author(s):  
Nurul Fathiah Mohamed Rosli ◽  
Muhammad Azmi Ayub ◽  
Roseleena Jaafan

The main objective of this research work is to anal yze the characteristics of a newly developed optical tactile sensor for sensing surface hardness. Many optical tactile sensors are bulky in size and lack of dexterity for biomedical applications. Therefore, this tactile sensor is design relative small in size and flexible for easier insertion in endoscopic surgery application. The characteristics of the tactile sensor are calibrated with respect to changes in the diameter, area and perimeter of a silicon tactile sensor subjected to normal forces applied at the point of interaction. A surface exploration computer algorithm to obtain the sensing information was developed to analyse the characteristic of the optical tactile sensor. The overall image anal ysis technique involves the following main stages: image acquisition (capturing of images), processing (thresholding, noise filtering and boundary detection ) and evaluation (force measurement). The measured forces were then compared to the actual forces to determine the accuracy of the tactile sensor’s characteristics. The results showed tluit the sensing characteristic with respect to changes in perimeter of the tactile sensor is more accurate compared to the other sensing characteristics. The outcomes of this research shows that the functionality of the developed new image anal ysis computer algorithm coupled with the silicone tactile sensor is suitable for biomedical applications such as in endoscopic surgery for measurement of tissue softness.


2018 ◽  
Vol 23 (6) ◽  
pp. 2638-2649 ◽  
Author(s):  
Kwonsik Shin ◽  
Minkyung Sim ◽  
Eunmin Choi ◽  
Hyunchul Park ◽  
Ji-Woong Choi ◽  
...  

Author(s):  
Lingfeng Zhu ◽  
Yancheng Wang ◽  
Xin Wu ◽  
Deqing Mei

Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.


Measurement ◽  
2020 ◽  
Vol 162 ◽  
pp. 107914 ◽  
Author(s):  
Naoki Hosoya ◽  
Takanori Niikura ◽  
Shinji Hashimura ◽  
Itsuro Kajiwara ◽  
Francesco Giorgio-Serchi

2015 ◽  
Vol 37 (3) ◽  
pp. 49-52 ◽  
Author(s):  
Adam Krasiński ◽  
Tomasz Kusio

Abstract Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.


2016 ◽  
Vol 140 (4) ◽  
pp. 3002-3002
Author(s):  
Gyungmin Toh ◽  
Dongki Min ◽  
Jaehong Lee ◽  
Junhong Park

Sign in / Sign up

Export Citation Format

Share Document