A study case on harmonic distortion created by wind turbines

Author(s):  
S. Papathanassiou ◽  
M. Papadopoulos
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3550 ◽  
Author(s):  
Nadia Maria Salgado-Herrera ◽  
David Campos-Gaona ◽  
Olimpo Anaya-Lara ◽  
Miguel Robles ◽  
Osvaldo Rodríguez-Hernández ◽  
...  

In this article, a technique for the reduction of total harmonic distortion (THD) in distributed renewables energy access (DREA) composed of wind turbines is introduced and tested under the wind speed conditions presented in Tamaulipas, Mexico. The analysis and simulation are delimited by a study case based on wind speeds measured and recorded for one year at two highs in the municipality of Soto La Marina, Tamaulipas, Mexico. From this information, the most probable wind speed and the corresponding turbulence intensity is calculated and applied to a wind energy conversion system (WECS). The WECS is composed of an active front-end (AFE) converter topology using four voltage source converters (VSCs) connected in parallel with a different phase shift angle at the digital sinusoidal pulse width modulation (DSPWM) signals of each VSC. The WECS is formed by the connection of five type-4 wind turbines (WTs). The effectiveness and robustness of the DREA integration are reviewed in the light of a complete mathematical model and corroborated by the simulation results in Matlab-Simulink®. The results evidence a reduction of the THD in grid currents up to four times and which enables the delivery of a power capacity of 10 MVA in the Tamaulipas AC distribution grid that complies with grid code of harmonic distortion production.


2009 ◽  
Vol 1 (07) ◽  
pp. 447-452 ◽  
Author(s):  
O. Carranza ◽  
E. Figueres ◽  
G. Garcerá ◽  
L.G. González

2012 ◽  
Vol 1 (3) ◽  
pp. 99 ◽  
Author(s):  
J.E. Rocha ◽  
W.D.C Sanchez

This paper discusses the electrical architectures adopted in wind turbines and its impact on the harmonic flux at the connected electric network. The integration of wind electric generators with the power grid needs energy processing by power electronics. It shows that different types of wind turbine generator systems use different types of electronic converters. This work provides a discussion on harmonic distortion taking place on the generator side, as well as in the power grid side. Keywords: grid connection, harmonic distortion, power electronics and converters, wind energy conversion systems, wind power, wind technology, wind turbines


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1612
Author(s):  
Przemysław Ptak ◽  
Krzysztof Górecki ◽  
Jakub Heleniak ◽  
Mariusz Orlikowski

In the paper, the electrical and optical parameters of wirelessly controlled LED lamps of the Hue type are analysed. Features of this class of wirelessly controlled LED lamps given by the producer are described and a measuring setup for the electrical and optical parameters of the considered LED lamps is proposed. The results of measurements of the two investigated lamps with variable hue, based on RGB chips or emitted white light of different CCTs (correlated colour temperatures), are shown and discussed. Attention was given to the parameters characterising the influence of the tested LED lamp on such electric power quality indicators as PF (power factor) and THD (total harmonic distortion). Therefore, the influence of voltage supply and the selected value of power density of the emitted light on the THD and PF is analysed and discussed.


2019 ◽  
Vol 2 (1) ◽  
pp. 8-16 ◽  
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: The co-authors provide an overview of the main types of wind turbines and power generators installed into wind energy devices, as well as advanced technological solutions. The co-authors have identified the principal strengths and weaknesses of existing wind power generators, if applied as alternative energy sources. The co-authors have proven the need to develop an algorithm for the selection of a wind generator-based autonomous power supply system in the course of designing windmill farms in Russia. Methods: The co-authors have analyzed several types of wind turbines and power generators. Results and discussions: The algorithm for the selection of a wind generator-based autonomous power supply system is presented as a first approximation. Conclusion: The emerging algorithm enables designers to develop an effective wind generator-based autonomous power supply system.


2020 ◽  
pp. 85-88 ◽  
Author(s):  
Nadezhda P. Kondratieva

The article describes the results of the study concerning the effect of the voltage level on current harmonic composition in greenhouses irradiators. It is found that its change affects the level of current harmonics of all types of the studied greenhouse irradiators. With decrease of nominal supply voltage by 10 %, the total harmonic distortion THDi decreases by 9 % for emitters equipped with high pressure sodium lamps (HPSL), by 10 % for emitters with electrode-less lamps and by 3 % for LED based emitters. With increase of nominal supply voltage by 10 %, THDi increases by 23 % for lighting devices equipped with HPSL, by 10 % for irradiators with electrode-less lamps and by 3 % for LED based emitters. Therefore, changes of supply voltage cause the least effect on the level of current harmonics of LED based emitters and then the emitters with electrode-less lamps. Change of the level of supply voltage causes the greatest effect on the level of current harmonics of HPSL based irradiators. Mathematical models of dependence of THDi on the level of supply voltage for greenhouse emitters equipped with LED, electrode-less lamps and HPSL lamps were formulated. These mathematical models may be used for calculations of total current when selecting transformers and supply cable lines for greenhouse lighting devices, for design of new or reconstruction of existing irradiation systems of greenhouse facilities, and for calculation of power losses in power supply networks of greenhouse facilities during feasibility studies for energy saving and energy efficiency increasing projects.


Sign in / Sign up

Export Citation Format

Share Document