Ga1−xAlxAs material for high-sensitivity pressure sensors

1982 ◽  
Vol 18 (15) ◽  
pp. 644 ◽  
Author(s):  
A.K. Saxena
2020 ◽  
Vol 12 (49) ◽  
pp. 55362-55371
Author(s):  
Tingting Zhao ◽  
Li Yuan ◽  
Tongkuai Li ◽  
Longlong Chen ◽  
Xifeng Li ◽  
...  

2011 ◽  
Vol 276 ◽  
pp. 145-155
Author(s):  
Benoit Olbrechts ◽  
Bertrand Rue ◽  
Thomas Pardoen ◽  
Denis Flandre ◽  
Jean Pierre Raskin

In this paper, novel pressure sensors approach is proposed and described. Active devices and oscillating circuits are directly integrated on very thin dielectric membranes as pressure transducers. Involved patterning of the membrane is supposed to cause a drop of mechanical robustness. Finite elements simulations are performed in order to better understand stress/strain distribution and as an attempt to explain the early burst of patterned membranes. Smart circuit designs are reported as solutions with high sensitivity and reduced footprint on membranes.


2021 ◽  
Author(s):  
Ang Li ◽  
Ce Cui ◽  
Weijie Wang ◽  
Yue Zhang ◽  
Jianyu Zhai ◽  
...  

Abstract Graphene is complexed with cellulose fibers to construct 3D aerogels, which is generally considered to be an environmentally friendly and simple strategy to achieve wide sensing, high sensitivity and low detection of wearable piezoresistive pressure sensors. Here, graphene is incorporated into waste paper fibers with cellulose as the main component to prepare graphene coated waste paper aerogel (GWA) using a simple “filtration-oven drying” method under atmospheric pressure. The GWA was further annealed to obtain the carbonized graphene coated waste paper aerogel (C-GWA) to achieve low density and excellent resilience. The result shows that the C-GWA has a rough outer surface due to the 3D structure formed by interpenetrated fibers and the carbon skeleton with wrinkles. The sensor based on GCA shows low density (25mg/cm3), a wide detection range of 0-132 kPa, an ultra-low detection limit of 2.5 Pa (a green bean, ≈ 53.4 mg), and a high sensitivity of 31.6 kPa− 1. In addition, the sensor based on C-GWA with the excellent performance can be used to detect human motions including the pulse of the human body, cheek blowing and bending of human joints. The result indicates that the sensor based on C-GWA shows great potential for wearable electronic products.


Small ◽  
2016 ◽  
Vol 12 (28) ◽  
pp. 3827-3836 ◽  
Author(s):  
Zongrong Wang ◽  
Shan Wang ◽  
Jifang Zeng ◽  
Xiaochen Ren ◽  
Adrian J. Y. Chee ◽  
...  

2005 ◽  
Vol 870 ◽  
Author(s):  
Arous Arshak ◽  
Khalil Arshak ◽  
Deirdre Morris ◽  
Olga Korostynska ◽  
Essa Jafer

AbstractIn this work, a PVDF thick film paste was deposited onto interdigitated electrodes to form a capacitor. Two different substrates, alumina and Melinex® were used. Capacitors, fabricated on alumina substrates were tested as strain gauges, and showed a high sensitivity with low hysteresis. Capacitors on Melinex® substrates were tested as pressure sensors by adhering them to planar and cylindrical surfaces and subjecting them to pressures up to 300 kPa. Their sensitivity and hysteresis during cycling were examined and compared. It was found that sensors on cylindrical surfaces showed a higher sensitivity, however the hysteresis was also increased. It is thought that this is due to instabilities in the polymer film, accentuated by stretching of the substrate.


Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000373-000378
Author(s):  
R. Otmani ◽  
N. Benmoussa ◽  
K. Ghaffour

Piezoresistive pressure sensors based on Silicon have a large thermal drift because of their high sensitivity to temperature (ten times more sensitive to temperature than metals). So the study of the thermal behavior of these sensors is essential to define the parameters that cause the drift of the output characteristics. In this study, we adopted the behavior of 2nd degree gauges depending on the temperature. Then we model the thermal behavior of the sensor and its characteristics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


Sign in / Sign up

Export Citation Format

Share Document