High-Resolution and High-Sensitivity Flexible Capacitive Pressure Sensors Enhanced by a Transferable Electrode Array and a Micropillar–PVDF Film

2021 ◽  
Vol 13 (6) ◽  
pp. 7635-7649
Author(s):  
Zebang Luo ◽  
Jing Chen ◽  
Zhengfang Zhu ◽  
Lin Li ◽  
Yi Su ◽  
...  
2013 ◽  
Vol 303-306 ◽  
pp. 274-279
Author(s):  
Min Shu ◽  
Yi Yang Li ◽  
Xing Zhi Liao

How to improve training records and skill level, and try to minimize sports injury at the same time, has increasingly become the focus of Volleyball Professional Training Design. This paper puts forward a method to acquire the foot pressure information of volleyball athlete. By utilizing PVDF film which has the advantages of fast response, high sensitivity, good mechanical properties etc., the array of pressure sensors and signal conditioning circuit have been designed and produced. Tested, this method can accurately in real time acquire volleyball athlete’s foot dynamic pressure distribution information.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


2020 ◽  
Vol 12 (49) ◽  
pp. 55362-55371
Author(s):  
Tingting Zhao ◽  
Li Yuan ◽  
Tongkuai Li ◽  
Longlong Chen ◽  
Xifeng Li ◽  
...  

2006 ◽  
Vol 23 (9) ◽  
pp. 2415-2417
Author(s):  
Deng Lun-Hua ◽  
Gao Xiao-Ming ◽  
Cao Zhen-Song ◽  
Zhao Wei-Xiong ◽  
Zhang Wei-Jun

2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Sign in / Sign up

Export Citation Format

Share Document