scholarly journals A novel DOA estimation method for uncorrelated and coherent signals via compressed sensing in sparse arrays

2021 ◽  
Author(s):  
Peng Han ◽  
Haiyun Xu ◽  
Weijia Cui ◽  
Yankui Zhang ◽  
Bin Ba
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 424 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Linxi Liu ◽  
Man Feng

The performance of a direction-finding system is significantly degraded by the imperfection of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain, a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients are estimated iteratively. Simulation results show that the proposed method can achieve better performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and improve the DOA estimation performance about 31.64 % by reducing the MC effect by about 4 dB.


2018 ◽  
Vol 22 (11) ◽  
pp. 2306-2309 ◽  
Author(s):  
Masaaki Inoue ◽  
Kazunori Hayashi ◽  
Hiroki Mori ◽  
Toshihisa Nabetani

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Chen ◽  
Hao Wu ◽  
Yongxiang Liu

In this article, a difference-coarray-based direction of arrival (DOA) method is introduced, which utilizes the uniform linear array (ULA) in a novel fashion to address the problem of DOA estimation for coherent signals. Inspired by the coarray-based estimators employed in cases of sparse arrays, we convert the sample covariance matrix of the observed signals into the difference coarray domain and process the signals using a spatial smoothing technique. The proposed method exhibits good accuracy and robustness in both the uncorrelated and coherent cases. Numerical simulations verify that the ULA difference coarray- (UDC-) based method can achieve good DOA estimation accuracy even when the SNR is very low. In addition, the UDC-based method is insensitive to the number of snapshots. Under extremely challenging conditions, the proposed UDC-ES-DOA method is preferred because of its outstanding robustness, while the UDC-MUSIC method is suitable for most moderate cases of lower complexity. Due to its demonstrated advantages, the proposed method is a promising and competitive solution for practical DOA estimation, especially for low-SNR or snapshot-limited applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Panhe Hu ◽  
Qinglong Bao ◽  
Zengping Chen

Direction-of-arrival (DOA) estimation in multipath environment is an important issue for passive bistatic radar (PBR) using frequency agile phased array VHF radar as illuminator of opportunity. Under such scenario, the main focus of this paper is to cope with the closely spaced uncorrelated and coherent signals in low signal-to-noise ratio and limited snapshots. Making full use of the characteristics of moduli of eigenvalues, the DOAs of the uncorrelated signals are firstly estimated. Afterwards, their contributions are eliminated by means of spatial difference technique. Finally, in order to improve resolution and accuracy DOA estimation of remaining coherent signals while avoiding the cross-terms effect, a new beamforming solution based iterative adaptive approach (IAA) is proposed to deal with a reconstructed covariance matrix. The proposed method combines the advantages of both spatial difference method and the IAA algorithm while avoiding their shortcomings. Simulation results validate its effectiveness; meanwhile, the good performances of the proposed method in terms of resolution probability, detection probability, and estimation accuracy are demonstrated by comparison with the existing methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Weijian Si ◽  
Xinggen Qu ◽  
Yilin Jiang ◽  
Tao Chen

A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is proposed, in which the DOA estimation problem is cast as the joint sparse reconstruction from multiple measurement vectors (MMV). The proposed method is derived through transforming quadratically constrained linear programming (QCLP) into unconstrained convex optimization which overcomes the drawback thatl1-norm is nondifferentiable when sparse sources are reconstructed by minimizingl1-norm. The convergence rate and estimation performance of the proposed method can be significantly improved, since the steepest descent step and Barzilai-Borwein step are alternately used as the search step in the unconstrained convex optimization. The proposed method can obtain satisfactory performance especially in these scenarios with low signal to noise ratio (SNR), small number of snapshots, or coherent sources. Simulation results show the superior performance of the proposed method as compared with existing methods.


2012 ◽  
Vol 263-266 ◽  
pp. 157-161 ◽  
Author(s):  
Jin Zhang ◽  
Yun Xiang Mao ◽  
Jian Yun Zhang

With a uniform linear antenna array, a new direction-of-arrival (DOA) estimation method is proposed for wideband coherent signals in the presence of unknown correlated noise but with structured covariance matrix. Based on this proposed structure, i.e. Hermitian Toeplitz, a spatial differencing operation that exploits this symmetry is applied to remove the effect of the unknown noise and a new matrix is constructed accordingly at each frequency bin. Following this step, a focusing operation is performed to give the corresponding aligned covariance matrix. Finally, an eigenstructure-based DOA estimation method is applied. The validity of the method is supported by numerical simulation under various conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haiyun Xu ◽  
Weijia Cui ◽  
Yuxi Du ◽  
Fengtong Mei ◽  
Bin Ba

When there is coexistence of uncorrelated and coherent signals in sparse arrays, the conventional algorithms for direction-of-arrival (DOA) estimation using difference coarray fail. In order to solve the problems, this paper analyzes the feasibility of using spatial smoothing in sparse arrays. Firstly, we summarize the two types of sparse arrays, one consisting of identical sparse subarrays and the other consisting of several uniform linear subarrays. Then, we give the feasibility analysis and the processes of applying spatial smoothing. At last, we discuss the performance of the number of detectable coherent signals in different sparse arrays. Numerical experiments prove the conclusions proposed by the paper.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4320 ◽  
Author(s):  
Ming-Yang Cao ◽  
Xingpeng Mao ◽  
Xiaozhuan Long ◽  
Lei Huang

This paper addresses the direction-of-arrival (DOA) estimation problem using a uniform rectangular array with electromagnetic vector-sensors in correlated/coherent signal environments. The polarization information is separated from the steering matrix to decorrelate the signals. By developing a tensorial structured received measurements of the array, we propose a tensor-based eigenvector DOA estimation method. Then we apply the forward-backward averaging to the tensor since it obeys the centro-Hermitian structure. In addition, a tensor-based polarization parameters estimation method is presented. The proposed algorithms are superior to the state-of-the-art algorithms in terms of estimation accuracy of coherent signals while only demand a modest computation burden comparing with the latter ones. Simulation results are given to demonstrate the effectiveness of the proposed methods under different scenarios.


Sign in / Sign up

Export Citation Format

Share Document