Design of a permanent‐magnet flux‐modulated machine with a high torque density and high power factor

2016 ◽  
Vol 10 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Mario Vukotić ◽  
Damijan Miljavec
2014 ◽  
Vol 50 (6) ◽  
pp. 3664-3674 ◽  
Author(s):  
Dawei Li ◽  
Ronghai Qu ◽  
Thomas A. Lipo

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2141 ◽  
Author(s):  
Yuqing Yao ◽  
Chunhua Liu ◽  
Christopher H.T. Lee

Multiphase machines have some distinct merits, including the high power density, high torque density, high efficiency and low torque ripple, etc. which can be beneficial for many industrial applications. This paper presents four different types of six-phase outer-rotor permanent-magnet (PM) brushless machines for electric vehicles (EVs), which include the inserted PM (IPM) type, surface PM (SPM) type, PM flux-switching (PMFS) type, and PM vernier (PMV) type. First, the design criteria and operation principle are compared and discussed. Then, their key characteristics are addressed and analyzed by using the finite element method (FEM). The results show that the PMV type is quite suitable for the direct-drive application for EVs with its high torque density and efficiency. Also, the IPM type is suitable for the indirect-drive application for EVs with its high power density and efficiency.


AIP Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 056622 ◽  
Author(s):  
Xuhui Zhu ◽  
Wenxiang Zhao ◽  
Jian Zhu ◽  
Fangfang Bian

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


2010 ◽  
Vol 4 (2) ◽  
pp. 1-6
Author(s):  
S. Sankar ◽  
◽  
G. Gokula Krishnan ◽  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


Sign in / Sign up

Export Citation Format

Share Document