Analytical design of dual‐band impedance transformer with additional transmission zero

2014 ◽  
Vol 8 (13) ◽  
pp. 1120-1126 ◽  
Author(s):  
Ming‐Lin Chuang
2018 ◽  
Vol 65 (5) ◽  
pp. 4424-4427 ◽  
Author(s):  
Yongle Wu ◽  
Shao Yong Zheng ◽  
Sai-Wing Leung ◽  
Yuanan Liu ◽  
Quan Xue

2010 ◽  
Vol 58 (12) ◽  
pp. 3832-3841 ◽  
Author(s):  
Yongle Wu ◽  
Yuanan Liu ◽  
Quan Xue ◽  
Shulan Li ◽  
Cuiping Yu

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wenxing Li ◽  
Yuanyuan Li

A novel, highly selective, low profile dual-band, and bandpass miniaturized-element frequency selective surface is proposed to realize stable angular responses and a controllable transmission zero. This FSS is a three-layer structure consisting of three metal layers that are separated from each other by two dielectric substrates. The equivalent circuit model of the FSS and its operating principle are presented and analyzed based on the microwave filter theory. The prototype of this FSS is simulated, fabricated, and measured, and its theoretical analysis, simulation, and measurement results show a good agreement. This FSS has achieved an excellent angular stability and wide out-of-band rejection performance in the scope of incidence angle of 80 degrees. Compared with the other multilayered FSSs and 3D FSSs proposed in previous works, it possesses a lower profile as well as a smaller size. A transmission zero is produced by etching slots on the edges of the middle metal layer to achieve superior frequency selectivity. By properly choosing the size and direction of the slots, the transmission zero and the polarization selectivity are able to be changed, respectively.


2017 ◽  
Vol 60 (1) ◽  
pp. 233-241
Author(s):  
Shaopu Sun ◽  
Yongle Wu ◽  
Lingxiao Jiao ◽  
Yuanan Liu

2017 ◽  
Vol 9 (7) ◽  
pp. 1447-1452
Author(s):  
Di Lu ◽  
Teng-Fei Yan ◽  
Xiao-Hong Tang

In this letter, a passive high-selectivity dual-band filter with two controllable transmission zero (TZ) pairs is proposed, while synthesis method and control mechanism of the two TZ pairs are investigated. Specifically, by employing the magnetic/electric mixed coupling (MEMC), source–load coupling (S–L coupling) and stepped-impedance resonators, a dual-band bandpass filter with two pairs of controllable TZs is constructed. Two controllable TZ pairs can be independently adjusted by re-modifying the associated coupling structures. To validate the synthesizability and controllability of the TZ pairs, mathematical synthesis, and EM simulations are carried out. Two demonstrative filters with identical passband performance and different central TZ distributions for GSM (0.9/1.8 GHz) are designed and measured. The analysis and experimental results show that the synthesis-controllable TZ pair (fz2, fz3) introduced by MEMC can be synthesized and controlled using inline mixed coupling synthesis, and the optimization-controllable TZ pair (fz1, fz4) because of S–L coupling is controlled by S–L coupling strength optimization procedure.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Weimin Wang ◽  
Yongle Wu ◽  
Yuanan Liu

A novel coupled-line structure is proposed to design dual-band and high-power Gysel power dividers with inherent impedance-transforming functions. Based on traditional even- and odd-mode technique, the analytical design methods in closed-form formula are obtained and the accurate electrical parameters analysis is presented. Due to the usage of coupled-line sections, more design-parameter freedom and a wider frequency-ratio operation range for this kind of dual-band Gysel powder divider are obtained. Several numerical examples are designed and calculated to demonstrate flexible dual-band applications with different impedance-transforming functions. A practical microstrip power divider operating at 2 GHz and 3.2 GHz is designed, fabricated, and measured. The good agreement between the calculated and measured results verifies our proposed circuit structure and analytical design approach.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6330
Author(s):  
Asif I. Omi ◽  
Rakibul Islam ◽  
Mohammad A. Maktoomi ◽  
Christine Zakzewski ◽  
Praveen Sekhar

In this paper, a novel analytical design technique is presented to implement a coupled-line wideband Wilkinson power divider (WPD). The configuration of the WPD is comprised of three distinct coupled-line and three isolation resistors. A comprehensive theoretical analysis is conducted to arrive at a set of completely new and rigorous design equations utilizing the dual-band behavior of commensurate transmission lines. Further, the corresponding S-parameters equations are also derived, which determine the wideband capability of the proposed WPD. To validate the proposed design concept, a prototype working at the resonance frequencies of 0.9 GHz and 1.8 GHz is designed and fabricated using 60 mils thick Rogers’ RO4003C substrate. The measured result of the fabricated prototype exhibits an excellent input return loss > 16.4 dB, output return loss > 15 dB, insertion loss < 3.30 dB and a remarkable isolation > 22 dB within the band and with a 15 dB and 10 dB references provide a fractional bandwidth of 110% and 141%, respectively.


2018 ◽  
Vol 17 (12) ◽  
pp. 2469-2473 ◽  
Author(s):  
Kirti Dhwaj ◽  
Li Jun Jiang ◽  
Tatsuo Itoh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document