Infrared high spatial-resolution determination of doping levels in p-n junctions

1978 ◽  
Vol 2 (5) ◽  
pp. 164
Author(s):  
J.C. White ◽  
J.G. Smith
2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


2016 ◽  
Vol 41 (4) ◽  
pp. 741-746 ◽  
Author(s):  
Oleh Mokryy ◽  
Oleksandr Tsyrulnyk

Abstract In this paper a possibility of determining a local velocity of the surface acoustic Rayleigh waves using a transducer, with the rigidly connected emitting and receiving parts, is considered. A problem on spatial resolution of such a transducer for investigation of inhomogeneous specimens is also examined. A high spatial resolution can be obtained due to the transducer displacement by a value less than the distance between the emitting and receiving parts. It is shown that in this case it is not necessary to measure the transducer displacement with a high accuracy for precise determination of the velocity. Such an effect is obtained through measuring the velocity of surface waves in one local region of the specimen with respect to the other. The criterion for optimal spatial resolution selection during spatially inhomogeneous specimens study is also proposed. The proposed criterion use is illustrated on the example of the determination of spatial distribution of the surface acoustic velocity in a steel specimen subjected to inhomogeneous plastic deformation.


Author(s):  
Evren U. Azeloglu ◽  
Glenn R. Gaudette ◽  
Irvin B. Krukenkamp ◽  
Fu-Pen Chiang

Unlike many other engineering designs, the heart, a pressure vessel, shows variations within its chambers and surface in terms of mechanical function. This necessitates a whole field technique with high spatial resolution. Computer aided speckle interferometry (CASI), a nondestructive examination technique, is herein developed for this purpose. A speckle pattern was created on the surface of isolated rabbit hearts. Images of the beating hearts werc acquired with a charge-couple device (CCD) camera for one second at a rate of 50 frames per second. CASI was used to determine the 2-D displacement vectors over regions of approximately 4 × 6 mm. Regional area stroke work (the integral of the left ventricular pressure with respect to area), the first invariant of the 2-D strain tensor, and the principle strains were used to determine the regional function. After occluding the blood supply to a region of the heart, significant changes were detected in all the previously mentioned parameters. Commonly used techniques cannot determine 2-D strain and lack the high spatial resolution of CASI. Determination of the 2-D strain can provide useful data on the functionality of the heart.


Sign in / Sign up

Export Citation Format

Share Document