scholarly journals M-dwarf exoplanet surface density distribution

2018 ◽  
Vol 612 ◽  
pp. L3 ◽  
Author(s):  
Michael R. Meyer ◽  
Adam Amara ◽  
Maddalena Reggiani ◽  
Sascha P. Quanz

Aims. We fit a log-normal function to the M-dwarf orbital surface density distribution of gas giant planets, over the mass range 1–10 times that of Jupiter, from 0.07 to 400 AU. Methods. We used a Markov chain Monte Carlo approach to explore the likelihoods of various parameter values consistent with point estimates of the data given our assumed functional form. Results. This fit is consistent with radial velocity, microlensing, and direct-imaging observations, is well-motivated from theoretical and phenomenological points of view, and predicts results of future surveys. We present probability distributions for each parameter and a maximum likelihood estimate solution. Conclusions. We suggest that this function makes more physical sense than other widely used functions, and we explore the implications of our results on the design of future exoplanet surveys.

2021 ◽  
Vol 118 (40) ◽  
pp. e2025782118
Author(s):  
Wei-Chia Chen ◽  
Juannan Zhou ◽  
Jason M. Sheltzer ◽  
Justin B. Kinney ◽  
David M. McCandlish

Density estimation in sequence space is a fundamental problem in machine learning that is also of great importance in computational biology. Due to the discrete nature and large dimensionality of sequence space, how best to estimate such probability distributions from a sample of observed sequences remains unclear. One common strategy for addressing this problem is to estimate the probability distribution using maximum entropy (i.e., calculating point estimates for some set of correlations based on the observed sequences and predicting the probability distribution that is as uniform as possible while still matching these point estimates). Building on recent advances in Bayesian field-theoretic density estimation, we present a generalization of this maximum entropy approach that provides greater expressivity in regions of sequence space where data are plentiful while still maintaining a conservative maximum entropy character in regions of sequence space where data are sparse or absent. In particular, we define a family of priors for probability distributions over sequence space with a single hyperparameter that controls the expected magnitude of higher-order correlations. This family of priors then results in a corresponding one-dimensional family of maximum a posteriori estimates that interpolate smoothly between the maximum entropy estimate and the observed sample frequencies. To demonstrate the power of this method, we use it to explore the high-dimensional geometry of the distribution of 5′ splice sites found in the human genome and to understand patterns of chromosomal abnormalities across human cancers.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 286
Author(s):  
V. García ◽  
M. Martel-Escobar ◽  
F. Vázquez-Polo

This paper describes a complementary tool for fitting probabilistic distributions in data analysis. First, we examine the well known bivariate index of skewness and the aggregate skewness function, and then introduce orderings of the skewness of probability distributions. Using an example, we highlight the advantages of this approach and then present results for these orderings in common uniparametric families of continuous distributions, showing that the orderings are well suited to the intuitive conception of skewness and, moreover, that the skewness can be controlled via the parameter values.


Author(s):  
Qunfeng Dong ◽  
Xiang Gao

Abstract Accurate estimations of the seroprevalence of antibodies to severe acute respiratory syndrome coronavirus 2 need to properly consider the specificity and sensitivity of the antibody tests. In addition, prior knowledge of the extent of viral infection in a population may also be important for adjusting the estimation of seroprevalence. For this purpose, we have developed a Bayesian approach that can incorporate the variabilities of specificity and sensitivity of the antibody tests, as well as the prior probability distribution of seroprevalence. We have demonstrated the utility of our approach by applying it to a recently published large-scale dataset from the US CDC, with our results providing entire probability distributions of seroprevalence instead of single-point estimates. Our Bayesian code is freely available at https://github.com/qunfengdong/AntibodyTest.


2020 ◽  
Vol 1 (4) ◽  
pp. 229-238
Author(s):  
Devi Munandar ◽  
Sudradjat Supian ◽  
Subiyanto Subiyanto

The influence of social media in disseminating information, especially during the COVID-19 pandemic, can be observed with time interval, so that the probability of number of tweets discussed by netizens on social media can be observed. The nonhomogeneous Poisson process (NHPP) is a Poisson process dependent on time parameters and the exponential distribution having unequal parameter values and, independently of each other. The probability of no occurrence an event in the initial state is one and the probability of an event in initial state is zero. Using of non-homogeneous Poisson in this paper aims to predict and count the number of tweet posts with the keyword coronavirus, COVID-19 with set time intervals every day. Posting of tweets from one time each day to the next do not affect each other and the number of tweets is not the same. The dataset used in this study is crawling of COVID-19 tweets three times a day with duration of 20 minutes each crawled for 13 days or 39 time intervals. The result of this study obtained predictions and calculated for the probability of the number of tweets for the tendency of netizens to post on the situation of the COVID-19 pandemic.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-67
Author(s):  
Rashidul Hasan Rashidul Hasan

The estimation of a suitable probability model depends mainly on the features of available temperature data at a particular place. As a result, existing probability distributions must be evaluated to establish an appropriate probability model that can deliver precise temperature estimation. The study intended to estimate the best-fitted probability model for the monthly maximum temperature at the Sylhet station in Bangladesh from January 2002 to December 2012 using several statistical analyses. Ten continuous probability distributions such as Exponential, Gamma, Log-Gamma, Beta, Normal, Log-Normal, Erlang, Power Function, Rayleigh, and Weibull distributions were fitted for these tasks using the maximum likelihood technique. To determine the model’s fit to the temperature data, several goodness-of-fit tests were applied, including the Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-square test. The Beta distribution is found to be the best-fitted probability distribution based on the largest overall score derived from three specified goodness-of-fit tests for the monthly maximum temperature data at the Sylhet station.


2005 ◽  
Vol 627 (2) ◽  
pp. L153-L155 ◽  
Author(s):  
Sanford S. Davis

Author(s):  
Natalia D. Nikolova ◽  
Kiril I. Tenekedjiev

The chapter focuses on the analysis of scaling constants when constructing a utility function over multi-dimensional prizes. Due to fuzzy rationality, those constants are elicited in an interval form. It is assumed that the decision maker has provided additional information describing the uncertainty of the scaling constants’ values within their uncertainty interval. The non-uniform method is presented to find point estimates of the interval scaling constants and to test their unit sum. An analytical solution of the procedure to construct the distribution of the interval scaling constants is provided, along with its numerical realization. A numerical procedure to estimate pvalue of the statistical test is also presented. The method allows making an uncertainty description of constants through different types of probability distributions and fuzzy sets.


2019 ◽  
Vol 629 ◽  
pp. A106 ◽  
Author(s):  
Sota Arakawa ◽  
Yuhito Shibaike

Jupiter has four large regular satellites called the Galilean satellites: Io, Europa, Ganymede, and Callisto. The inner three of the Galilean satellites orbit in a 4:2:1 mean motion resonance; therefore their orbital configuration may originate from the stopping of the migration of Io near the bump in the surface density distribution and following resonant trapping of Europa and Ganymede. The formation mechanism of the bump near the orbit of the innermost satellite, Io, is not yet understood, however. Here, we show that photophoresis in the circumjovian disk could be the cause of the bump using analytic calculations of steady-state accretion disks. We propose that photophoresis in the circumjovian disk could stop the inward migration of dust particles near the orbit of Io. The resulting dust-depleted inner region would have a higher ionization fraction, and thus admit increased magnetorotational-instability-driven accretion stress in comparison to the outer region. The increase of the accretion stress at the photophoretic dust barrier would form a bump in the surface density distribution, halting the migration of Io.


2018 ◽  
Vol 20 (35) ◽  
pp. 22946-22951 ◽  
Author(s):  
Jing Zhou ◽  
Xiaowei Zhang ◽  
Jizheng Sun ◽  
Zechun Dang ◽  
Jinqi Li ◽  
...  

The effects of geometry and surface density distribution of nanopillars on cell adhesion studied by a quantitative thermodynamic model showed that high (low) surface distribution density and large (small) radius result in the “Top” (“Bottom”) mode.


Sign in / Sign up

Export Citation Format

Share Document