scholarly journals The MUSE Hubble Ultra Deep Field Survey

2017 ◽  
Vol 608 ◽  
pp. A8 ◽  
Author(s):  
Floriane Leclercq ◽  
Roland Bacon ◽  
Lutz Wisotzki ◽  
Peter Mitchell ◽  
Thibault Garel ◽  
...  

We report the detection of extended Lyα haloes around 145 individual star-forming galaxies at redshifts 3 ≤ z ≤ 6 in the Hubble Ultra Deep Field observed with the Multi-Unit Spectroscopic Explorer (MUSE) at ESO-VLT. Our sample consists of continuum-faint (− 15 ≥ MUV ≥ −22) Lyα emitters (LAEs). Using a 2D, two-component (continuum-like and halo) decomposition of Lyα emission assuming circular exponential distributions, we measure scale lengths and luminosities of Lyα haloes. We find that 80% of our objects having reliable Lyα halo measurements show Lyα emission that is significantly more extended than the UV continuum detected by HST (by a factor ≈4 to >20). The median exponential scale length of the Lyα haloes in our sample is ≈4.5 kpc with a few haloes exceeding 10 kpc. By comparing the maximal detected extent of the Lyα emission with the predicted dark matter halo virial radii of simulated galaxies, we show that the detected Lyα emission of our selected sample of Lyα emitters probes a significant portion of the cold circum-galactic medium of these galaxies (>50% in average). This result therefore shows that there must be significant HI reservoirs in the circum-galactic medium and reinforces the idea that Lyα haloes are ubiquitous around high-redshift Lyα emitting galaxies. Our characterization of the Lyα haloes indicates that the majority of the Lyα flux comes from the halo (≈65%) and that their scale lengths seem to be linked to the UV properties of the galaxies (sizes and magnitudes). We do not observe a significant Lyα halo size evolution with redshift, although our sample for z> 5 is very small. We also explore the diversity of the Lyα line profiles in our sample and we find that the Lyα lines cover a large range of full width at half maximum (FWHM) from 118 to 512 km s-1. While the FWHM does not seem to be correlated to the Lyα scale length, most compact Lyα haloes and those that are not detected with high significance tend to have narrower Lyα profiles (<350 km s-1). Finally, we investigate the origin of the extended Lyα emission but we conclude that our data do not allow us to disentangle the possible processes, i.e. scattering from star-forming regions, fluorescence, cooling radiation from cold gas accretion, and emission from satellite galaxies.

2004 ◽  
Vol 615 (1) ◽  
pp. 98-117 ◽  
Author(s):  
Samantha A. Rix ◽  
Max Pettini ◽  
Claus Leitherer ◽  
Fabio Bresolin ◽  
Rolf‐Peter Kudritzki ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


Author(s):  
Neil Gehrels

Since its launch on 20 November 2004, the Swift mission has been detecting approximately 100 gamma-ray bursts (GRBs) each year, and immediately (within approx. 90 s) starting simultaneous X-ray and UV/optical observations of the afterglow. It has already collected an impressive database, including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows and a rapid follow-up by other observatories notified through the GCN. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations and the conclusion that short GRBs can occur in non-star-forming galaxies or regions, whereas long GRBs are strongly concentrated within the star-forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z ∼5–6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to a much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and the association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova.


2020 ◽  
Vol 58 (1) ◽  
pp. 617-659
Author(s):  
Masami Ouchi ◽  
Yoshiaki Ono ◽  
Takatoshi Shibuya

Hydrogen Lyman-α (Lyα) emission has been one of the major observational probes for the high-redshift Universe since the first discoveries of high- z Lyα-emitting galaxies in the late 1990s. Due to the strong Lyα emission originated by resonant scattering and recombination of the most abundant element, Lyα observations witness not only Hii regions of star formation and active galactic nuclei (AGNs) but also diffuse Hi gas in the circumgalactic medium (CGM) and the intergalactic medium (IGM). Here, we review Lyα sources and present theoretical interpretations reached to date. We conclude the following: ▪  A typical Lyα emitter (LAE) at z ≳ 2 with a L* Lyα luminosity is a high- z counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (dark matter halo) mass and star-formation rate of 108−9M⊙ (1010−11M⊙) and 1–10 M⊙ year−1, respectively. ▪  High- z SFGs ubiquitously have a diffuse Lyα-emitting halo in the CGM extending to the halo virial radius and beyond. ▪  Remaining neutral hydrogen at the epoch of cosmic reionization makes a strong dimming of Lyα emission for galaxies at z > 6 that suggests the late reionization history. The next-generation large-telescope projects will combine Lyα emission data with Hi Lyα absorptions and 21-cm radio data that map out the majority of hydrogen (Hi+Hii) gas, uncovering the exchanges of ( a) matter by outflow and inflow and ( b) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.


2016 ◽  
Vol 12 (S329) ◽  
pp. 454-454
Author(s):  
Michael Wegner ◽  
Ralf Bender ◽  
Ray Sharples ◽  

AbstractKMOS, the “K-Band Multi-Object Spectrometer”, was built by a British-German consortium as a second generation instrument for the ESO Paranal Observatory. It is available to the user community since its successful commissioning in 2013 (Sharples et al. 2013). As a multi-object integral field spectrometer for the near infrared, KMOS offers 24 deployable IFUs of 2.8x2.8 arcsec and 14x14 spatial pixels each, which can either be placed individually within a 7.2 arcmin field of view or combined in a Mosaic mode in order to map contiguous fields on sky. The instrument covers the whole range of NIR atmospheric windows (0.8. . .2.5μm) with 5 spectral bands and a resolution of R ≈ 3000. . .4000.Although the main science driver for KMOS was to enable the study of galaxy formation and evolution through multiplexed observations of high-redshift galaxies, KMOS also already exhibited its tremendous potential for the spectroscopy of massive stars: A quantitative study of 27 RSGs in NGC 300 (Gazak et al. 2015) proves its applicability for the spectroscopy of individual stars even beyond the Local Group. A Mosaic observation of the Galactic centre (Feldmeier-Krause et al. 2015) demonstrates how spectra of early-type stars can be extracted from a contiguous field. Other applications include (but need not be limited to) velocity determinations of globular cluster stars, observations of jets/outflows of high mass protostars, or contiguous mapping of star-forming regions.We therefore aim at presenting the excellent capabilities of KMOS to a wider community and indicate potential applications.


2008 ◽  
Vol 4 (S256) ◽  
pp. 191-202
Author(s):  
J. M. Oliveira

AbstractThe Magellanic Clouds offer unique opportunities to study star formation both on the global scales of an interacting system of gas-rich galaxies, as well as on the scales of individual star-forming clouds. The interstellar media of the Small and Large Magellanic Clouds and their connecting bridge, span a range in (low) metallicities and gas density. This allows us to study star formation near the critical density and gain an understanding of how tidal dwarfs might form; the low metallicity of the SMC in particular is typical of galaxies during the early phases of their assembly, and studies of star formation in the SMC provide a stepping stone to understand star formation at high redshift where these processes can not be directly observed. In this review, I introduce the different environments encountered in the Magellanic System and compare these with the Schmidt-Kennicutt law and the predicted efficiencies of various chemo-physical processes. I then concentrate on three aspects that are of particular importance: the chemistry of the embedded stages of star formation, the Initial Mass Function, and feedback effects from massive stars and its ability to trigger further star formation.


2018 ◽  
Vol 620 ◽  
pp. A119 ◽  
Author(s):  
A. de Ugarte Postigo ◽  
C. C. Thöne ◽  
J. Bolmer ◽  
S. Schulze ◽  
S. Martín ◽  
...  

Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. Aims. We aim to use the afterglow of GRB 161023A at a redshift z = 2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight. Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst. Results. We infer a host-galaxy metallicity of [Zn/H] = −1.11 ± 0.07, which, corrected for dust depletion, results in [X/H] = −0.94 ± 0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cm−2) < 15.7 and log(NHCO+/cm−-12, which are consistent with those that we obtain from the optical spectra, log(NH2/cm−2)< 15.2 and log(NCO/cm−2) < 14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components. Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust.


2019 ◽  
Vol 621 ◽  
pp. A62 ◽  
Author(s):  
Yoko Okada ◽  
Rolf Güsten ◽  
Miguel Angel Requena-Torres ◽  
Markus Röllig ◽  
Jürgen Stutzki ◽  
...  

Aims. The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. The LMC provides a unique local template to bridge studies in the Galaxy and high redshift galaxies because of its low metallicity and proximity, enabling us to study the detailed physics of the ISM in spatially resolved individual star-forming regions. Following Okada et al. (Okada, Y., Requena-Torres, M. A., Güsten, R., et al. 2015, A&A, 580, A54), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-τ PDR model. Methods. We mapped 3–13 arcmin2 areas in 30 Dor, N158, N160, and N159 along the molecular ridge of the LMC in [C II] 158 μm with GREAT on board SOFIA. We also observed the same area with CO(2-1) to (6-5), 13CO(2-1) and (3-2), [C I] 3P1–3P0 and 3P2–3P1 with APEX. For selected positions in N159 and 30 Dor, we observed [O I] 145 μm and [O I] 63 μm with upGREAT. All spectra are velocity resolved. Results. In all four star-forming regions, the line profiles of CO, 13CO, and [C I] emission are similar, being reproduced by a combination of Gaussian profiles defined by CO(3-2), whereas [C II] typically shows wider line profiles or an additional velocity component. At several positions in N159 and 30 Dor, we observed the velocity-resolved [O I] 145 and 63 μm lines for the first time. At some positions, the [O I] line profiles match those of CO, at other positions they are more similar to the [C II] profiles. We interpret the different line profiles of CO, [C II] and [O I] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We modeled the emission from the CO, [C I], [C II], and [O I] lines and the far-infrared continuum emission using the latest KOSMA-τ PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159 W, we propose a scenario that the CO, [C II], and [O I] 63 μm emission are weaker than expected because of mutual shielding among clumps.


2007 ◽  
Vol 3 (S250) ◽  
pp. 415-428
Author(s):  
Max Pettini

AbstractThe five years that have passed since the last IAU Symposium devoted to massive stars have seen a veritable explosion of data on the high redshift universe. The tools developed to study massive stars in nearby galaxies are finding increasing application to the analysis of the spectra of star-forming regions at redshifts as high as z = 7. In this brief review, I consider three topics of relevance to this symposium: the determination of the metallicities of galaxies at high redshifts from consideration of their ultraviolet stellar spectra; constraints on the initial mass function of massive stars in galaxies at z = 2 − 3; and new clues to the nucleosynthesis of carbon and nitrogen in massive stars of low metallicity. The review concludes with a look ahead at some of the questions that may occupy us for the next five years (at least!).


Sign in / Sign up

Export Citation Format

Share Document