scholarly journals SEDIGISM: the kinematics of ATLASGAL filaments

2018 ◽  
Vol 619 ◽  
pp. A166 ◽  
Author(s):  
M. Mattern ◽  
J. Kauffmann ◽  
T. Csengeri ◽  
J. S. Urquhart ◽  
S. Leurini ◽  
...  

Analyzing the kinematics of filamentary molecular clouds is a crucial step toward understanding their role in the star formation process. Therefore, we study the kinematics of 283 filament candidates in the inner Galaxy, that were previously identified in the ATLASGAL dust continuum data. The 13CO(2 – 1) and C18O(2 – 1) data of the SEDIGISM survey (Structure, Excitation, and Dynamics of the Inner Galactic Inter Stellar Medium) allows us to analyze the kinematics of these targets and to determine their physical properties at a resolution of 30′′ and 0.25 km s−1. To do so, we developed an automated algorithm to identify all velocity components along the line-of-sight correlated with the ATLASGAL dust emission, and derive size, mass, and kinematic properties for all velocity components. We find two-third of the filament candidates are coherent structures in position-position-velocity space. The remaining candidates appear to be the result of a superposition of two or three filamentary structures along the line-of-sight. At the resolution of the data, on average the filaments are in agreement with Plummer-like radial density profiles with a power-law exponent of p ≈ 1.5 ± 0.5, indicating that they are typically embedded in a molecular cloud and do not have a well-defined outer radius. Also, we find a correlation between the observed mass per unit length and the velocity dispersion of the filament of m ∝ σv2. We show that this relation can be explained by a virial balance between self-gravity and pressure. Another possible explanation could be radial collapse of the filament, where we can exclude infall motions close to the free-fall velocity.

2019 ◽  
Vol 485 (1) ◽  
pp. L146-L150 ◽  
Author(s):  
Elad Steinberg ◽  
Eric R Coughlin ◽  
Nicholas C Stone ◽  
Brian D Metzger

ABSTRACT The tidal destruction of a star by a massive black hole, known as a tidal disruption event (TDE), is commonly modelled using the ‘frozen-in’ approximation. Under this approximation, the star maintains exact hydrostatic balance prior to entering the tidal sphere (radius rt), after which point its internal pressure and self-gravity become instantaneously negligible and the debris undergoes ballistic free fall. We present a suite of hydrodynamical simulations of TDEs with high penetration factors β ≡ rt/rp = 5−7, where rp is the pericentre of the stellar centre of mass, calculated using a Voronoi-based moving-mesh technique. We show that basic assumptions of the frozen-in model, such as the neglect of self-gravity inside rt, are violated. Indeed, roughly equal fractions of the final energy spread accumulate exiting and entering the tidal sphere, though the frozen-in prediction is correct at the order-of-magnitude level. We also show that an $\mathcal {O}(1)$ fraction of the debris mass remains transversely confined by self-gravity even for large β which has implications for the radio emission from the unbound debris and, potentially, for the circularization efficiency of the bound streams.


2019 ◽  
Vol 486 (1) ◽  
pp. 1138-1145
Author(s):  
T V Ricci ◽  
J E Steiner

Abstract Active Galactic Nuclei are objects associated with the presence of an accretion disc around supermassive black holes found in the very central region of galaxies with a well-defined bulge. In the optical range of the spectrum, a possible signature of the accretion disc is the presence of a broad double-peaked component that is mostly seen in H α. In this paper, we report the detection of a double-peaked feature in the H α line in the nucleus of the galaxy NGC 4958. The narrow-line region of this object has an emission that is typical of a low-ionization nuclear emission-line region galaxy, which is the usual classification for double-peaked emitters. A central broad component, related to the broad-line region of this object, is seen in H α and also in H β. We concluded that the double-peaked emission is emitted by a circular relativistic Keplerian disc with an inner radius ξi  = 570 ± 83, an outer radius ξo  = 860 ± 170 (both in units of GMSMBH/c2), an inclination to the line of sight i = 27.2 ± 0.7° and a local broadening parameter σ  = 1310 ± 70 km s−1.


2019 ◽  
Vol 629 ◽  
pp. A81 ◽  
Author(s):  
S. P. Treviño-Morales ◽  
A. Fuente ◽  
Á. Sánchez-Monge ◽  
J. Kainulainen ◽  
P. Didelon ◽  
...  

Context. High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2 (hereafter Mon R2), at a distance of 830 pc, harbors one of the closest of these systems, making it an excellent target for case studies. Aims. We investigate the morphology, stability and dynamical properties of the Mon R2 hub-filament system. Methods. We employed observations of the 13CO and C18O 1 →0 and 2 →1 lines obtained with the IRAM-30 m telescope. We also used H2 column density maps derived from Herschel dust emission observations. Results. We identified the filamentary network in Mon R2 with the DisPerSE algorithm and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament). The main filaments have line masses of 30–100 M⊙ pc−1 and show signs of fragmentation, while the secondary filaments have line masses of 12–60 M⊙ pc−1 and show fragmentation only sporadically. In the context of Ostriker’s hydrostatic filament model, the main filaments are thermally supercritical. If non-thermal motions are included, most of them are transcritical. Most of the secondary filaments are roughly transcritical regardless of whether non-thermal motions are included or not. From the morphology and kinematics of the main filaments, we estimate a mass accretion rate of 10−4–10−3 M⊙ yr−1 into the central hub. The secondary filaments accrete into the main filaments at a rate of 0.1–0.4 × 10−4 M⊙ yr−1. The main filaments extend into the central hub. Their velocity gradients increase toward the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is ~2.5 Myr, ten times longer than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring- or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.


1992 ◽  
Vol 114 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Lian-Ping Wang ◽  
D. E. Stock

Numerical experiments can be used to study heavy particle dispersion by tracking particles through a numerically generated instantaneous turbulent flow field. In this manner, data can be generated to supplement physical experiments. To perform the numerical experiments efficiently and accurately, the time step used when tracking the particles through the fluid must be chosen correctly. After finding a suitable time step for one particular simulation, the time step must be reduced as the total integration time increases and as the free-fall velocity of the particle increases. Based on the numerical calculations, we suggest that the nonlinear drag be included in a numerical simulation if the ratio of the particle’s Stokes free-fall velocity to the fluid rms velocity is greater than two.


2015 ◽  
Vol 11 (S315) ◽  
pp. 53-60
Author(s):  
Doris Arzoumanian ◽  
Philippe André ◽  
François Boulanger

AbstractRecent Herschel and Planck observations of submillimeter dust emission revealed the omnipresence of filamentary structures in the interstellar medium (ISM). The ubiquity of filaments in quiescent clouds as well as in star-forming regions indicates that the formation of filamentary structures is a natural product of the physics at play in the magnetized turbulent cold ISM. An analysis of more than 270 filaments observed with Herschel in 8 regions of the Gould Belt, shows that interstellar filaments are characterized by a narrow distribution of central width sharply peaked at ~0.1 pc, while they span a wide column density range. Molecular line observations of a sample of these filaments show evidence of an increase in the velocity dispersion of dense filaments with column density, suggesting an evolution in mass per unit length due to accretion of surrounding material onto these star-forming filaments. The analyses of Planck dust polarization observations show that both the mean magnetic field and its fluctuations along the filaments are different from those of their surrounding clouds. This points to a coupling between the matter and the $\vec{B}$-field in the filament formation process. These observational results, derived from dust and gas tracers in total and polarized intensity, set strong constraints on our understanding of the formation and evolution of filaments in the ISM. They provide important clues on the initial conditions of the star formation process along interstellar filaments.


1994 ◽  
Vol 59 (12) ◽  
pp. 2583-2594 ◽  
Author(s):  
Miloslav Hartman ◽  
Otakar Trnka ◽  
Karel Svoboda ◽  
Václav Veselý

A comprehensive correlation has been developed of the drag coefficient for nonspherical isometric particles as a function the Reynolds number and the particle sphericity on the basis of data reported in the literature. The proposed formula covers the Stokes, the transitional and the Newton region. The predictions of the reported correlation have been compared to experimental data measured in this work with the dolomitic materials in respect to their use in calcination and gas cleaning processes with fluidized beds. Approximative explicit formulae have also been reported that make it possible to estimate the terminal free-fall velocity of a given particle or to predict the particle diameter corresponding to a fluid velocity of interest.


The motion of a rocket with its propellant exhausted and above the heights where aerodynamic forces can be used to control its motion, can be considered as that of a rigid body in free flight, subjected to small perturbations by weak aerodynamic forces. This permits the separate consideration of the motion of the centre of mass of the rocket along an approximately ‘free fall’ trajectory and the rotation of the rocket about its centre of mass. The rotational motion of free rigid bodies is well known and may be readily visualized by means of Poinsot’s construction (Corben & Stehle 1960). This analysis may be applied to the motion of a rocket with an accuracy which depends on the smallness of the residual aerodynamic forces and the time interval over which the ‘free fall’ approximation is applied. The Skylark rocket vehicle is a long axisymmetric body of approximately uniform mass per unit length. The momental ellipsoid of such a body is a long ellipsoid of revolution with its major axis along the spin axis of the rocket. In this case, the angular motion will consist only of roll and regular precession. In the early stages of the flight the rocket is given some spin motion by aero­dynamic forces on the fins. The angle between the geometrical axis of the rocket and the angular momentum vector is small and can change only slowly because of the aerodynamic forces which are important during the initial stages of the flight. The rate of precession of the rocket axis is much smaller than the rate of spin. In these circumstances, the angular motion will be as shown in figure 11 and can be regarded as roll about the vehicle axis OV with angular velocity ω and precession of this axis about an invariant direction OC with angular velocity Ω. The semi-angle, COV = ρ , of the precession cone is given by cos p = I L / I T ω / Ω , where I L and I T are the moments of inertia about longitudinal and transverse axes passing through the centre of mass.


Author(s):  
S. P. Hayes ◽  
H. B. Milburn ◽  
E. F. Ford
Keyword(s):  

Author(s):  
F. Audard ◽  
P. Fede ◽  
O. Simonin ◽  
E. Belut

The paper deals with the Euler-Euler numerical simulation of an experimental study (Ansart et al., 2009 [1]) of freely falling granular jet for investigating the dispersion of dust. The configuration is a bunker, where quasi-static particulate flow takes place, and a free-fall chamber. As a first step, a frictional viscosity model developed by Srivastava and Sundaresan (2003) [2] is implemented to take into account the frictional effects occurring in the quasi-static particulate flows. Without the frictional model for the viscosity, the numerical simulations overpredict the solid mass flow rate at the outlet of the bunker. When using the frictional viscosity, the solid mass flow rate is in better accordance with the experimental value. However, the solid velocity is overestimated in numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document