scholarly journals Origin of the hemispheric asymmetry of solar activity

2018 ◽  
Vol 618 ◽  
pp. A89 ◽  
Author(s):  
M. Schüssler ◽  
R. H. Cameron

The frequency spectrum of the hemispheric asymmetry of solar activity shows enhanced power for the period ranges around 8.5 years and between 30 and 50 years. This can be understood as the sum and beat periods of the superposition of two dynamo modes: a dipolar mode with a (magnetic) period of about 22 years and a quadrupolar mode with a period between 13 and 15 years. An updated Babcock–Leighton-type dynamo model with weak driving as indicated by stellar observations shows an excited dipole mode and a damped quadrupole mode in the correct range of periods. Random excitation of the quadrupole by stochastic fluctuations of the source term for the poloidal field leads to a time evolution of activity and asymmetry that is consistent with the observational results.

2012 ◽  
Vol 8 (S294) ◽  
pp. 433-438
Author(s):  
Bidya Binay Karak ◽  
Arnab Rai Choudhuri

AbstractThe occurrence of grand minima like the Maunder minimum is an intriguing aspect of the sunspot cycle. We use the flux transport dynamo model to explain the grand minima, showing that they arise when either the poloidal field or the meridional circulation falls to a sufficiently low value due to fluctuations. Assuming these fluctuations to be Gaussian and determining the various parameters from the data of the last 28 cycles, we carry on a dynamo simulation with both these fluctuations. The results are remarkably close to the observational data.


2021 ◽  
Vol 44 ◽  
pp. 85-91
Author(s):  
V.N. Obridko ◽  
◽  
D.D. Sokoloff ◽  
V.V. Pipin ◽  
A.S. Shibalova ◽  
...  

In addition to the well-known 11-year cycle, longer and shorter characteristic periods can be isolated in variations of the parameters of helio-geophysical activity. Periods of about 36 and 60 years were revealed in variations of the geomagnetic activity and an approximately 60-year periodicity, in the evolution of correlation between the pressure in the lower atmosphere and the solar activity. Similar periods are observed in the cyclonic activity. Such periods in the parameters of the solar activity are difficult to identify because of a limited database available; however, they are clearly visible in variations of the asymmetry of the sunspot activity in the northern and southern solar hemispheres. In geomagnetic variations, one can also isolate oscillations with the characteristic periods of 5-6 years (QSO) and 2-3 years (QBO). We have considered 5-6-year periodicities (about half the main cycle) observed in variations of the sunspot numbers and the intensity of the dipole component of the solar magnetic field. A comparison with different magnetic dynamo models allowed us to determine the possible origin of these oscillations. A similar result can be reproduced in a dynamo model with nonlinear parameter variations. In this case, the activity cycle turns out to be anharmonic and contains other periodicities in addition to the main one. As a result of the study, we conclude that the 5-6-year activity variations are related to the processes of nonlinear saturation of the dynamo in the solar interior. Quasi-biennial oscillations are actually separate pulses related little to each other. Therefore, the methods of the spectral analysis do not reveal them over large time intervals. They are a direct product of local fields, are generated in the near-surface layers, and are reliably recorded only in the epochs of high solar activity.


2020 ◽  
Vol 642 ◽  
pp. A51
Author(s):  
Soumitra Hazra ◽  
Allan Sacha Brun ◽  
Dibyendu Nandy

Context. Predictions of solar cycle 24 obtained from advection-dominated and diffusion-dominated kinematic dynamo models are different if the Babcock–Leighton mechanism is the only source of the poloidal field. Some previous studies argue that the discrepancy arises due to different memories of the solar dynamo for advection- and diffusion-dominated solar convection zones. Aims. We aim to investigate the differences in solar cycle memory obtained from advection-dominated and diffusion-dominated kinematic solar dynamo models. Specifically, we explore whether inclusion of Parker’s mean-field α effect, in addition to the Babcock–Leighton mechanism, has any impact on the memory of the solar cycle. Methods. We used a kinematic flux transport solar dynamo model where poloidal field generation takes place due to both the Babcock–Leighton mechanism and the mean-field α effect. We additionally considered stochastic fluctuations in this model and explored cycle-to-cycle correlations between the polar field at minima and toroidal field at cycle maxima. Results. Solar dynamo memory is always limited to only one cycle in diffusion-dominated dynamo regimes while in advection-dominated regimes the memory is distributed over a few solar cycles. However, the addition of a mean-field α effect reduces the memory of the solar dynamo to within one cycle in the advection-dominated dynamo regime when there are no fluctuations in the mean-field α effect. When fluctuations are introduced in the mean-field poloidal source a more complex scenario is evident, with very weak but significant correlations emerging across a few cycles. Conclusions. Our results imply that inclusion of a mean-field α effect in the framework of a flux transport Babcock–Leighton dynamo model leads to additional complexities that may impact memory and predictability of predictive dynamo models of the solar cycle.


2009 ◽  
Vol 5 (S264) ◽  
pp. 33-38
Author(s):  
Hiromoto Shibahashi

AbstractThe brilliant outcome of some 30 years of helioseismology spreads over a wide range of topics. Some highlights relevant to the cause of the solar activity cycle are listed up. The rotation profile in the solar convective zone is discussed as an important source of the dynamo mechanism. The kinematic dynamo model is described in the linear approximation, and the condition for the solar type dynamo is derived. It is shown that comparison of this condition with the rotation profile determined from helioseismology is useful to identify the possible seats of the dynamo.


2020 ◽  
Vol 499 (4) ◽  
pp. 5442-5446
Author(s):  
Jaidev Sharma ◽  
Anil K Malik ◽  
Brajesh Kumar ◽  
Hari Om Vats

ABSTRACT In this paper, we report evidence of a very strong and statistically significant relationship between hemispheric asymmetry in the solar coronal rotation rate and solar activity. Our approach is based on the cross-correlation of the hemispheric asymmetry index (AI) in the rotation rate with annual solar activity indicators. To obtain the hemispheric asymmetry in the solar rotation rate, we use solar full disc (SFD) images at 30.4-, 19.5- and 28.4-nm wavelengths for the 24th solar cycle, that is, for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that the hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. However, hemispheric asymmetry decreases gradually on both sides (i.e. from 2008 to 2011 and from 2014 to 2018). The results show that the AI leads sunspot numbers by ∼ 1.56 yr. This is a clear indication that hemispheric asymmetry triggers the formation of sunspots in conjunction with the differential rotation of the Sun.


2018 ◽  
Vol 609 ◽  
pp. A56 ◽  
Author(s):  
R. H. Cameron ◽  
T. L. Duvall ◽  
M. Schüssler ◽  
H. Schunker

Context. The solar dynamo consists of a process that converts poloidal magnetic field to toroidal magnetic field followed by a process that creates new poloidal field from the toroidal field. Aims. Our aim is to observe the poloidal and toroidal fields relevant to the global solar dynamo and to see if their evolution is captured by a Babcock-Leighton dynamo. Methods. We used synoptic maps of the surface radial field from the KPNSO/VT and SOLIS observatories, to construct the poloidal field as a function of time and latitude; we also used full disk images from Wilcox Solar Observatory and SOHO/MDI to infer the longitudinally averaged surface azimuthal field. We show that the latter is consistent with an estimate of the longitudinally averaged surface azimuthal field due to flux emergence and therefore is closely related to the subsurface toroidal field. Results. We present maps of the poloidal and toroidal magnetic fields of the global solar dynamo. The longitude-averaged azimuthal field observed at the surface results from flux emergence. At high latitudes this component follows the radial component of the polar fields with a short time lag of between 1−3 years. The lag increases at lower latitudes. The observed evolution of the poloidal and toroidal magnetic fields is described by the (updated) Babcock-Leighton dynamo model.


2019 ◽  
Vol 15 (S354) ◽  
pp. 147-156
Author(s):  
Irina N. Kitiashvili

AbstractPrediction of solar activity cycles is challenging because physical processes inside the Sun involve a broad range of multiscale dynamics that no model can reproduce and because the available observations are highly limited and cover mostly surface layers. Helioseismology makes it possible to probe solar dynamics in the convective zone, but variations in differential rotation and meridional circulation are currently available for only two solar activity cycles. It has been demonstrated that sunspot observations, which cover over 400 years, can be used to calibrate the Parker-Kleeorin-Ruzmaikin dynamo model, and that the Ensemble Kalman Filter (EnKF) method can be used to link the modeled magnetic fields to sunspot observations and make reliable predictions of a following activity cycle. However, for more accurate predictions, it is necessary to use actual observations of the solar magnetic fields, which are available only for the last four solar cycles. In this paper I briefly discuss the influence of the limited number of available observations on the accuracy of EnKF estimates of solar cycle parameters, the criteria to evaluate the predictions, and application of synoptic magnetograms to the prediction of solar activity.


2019 ◽  
Vol 489 (3) ◽  
pp. 4329-4337 ◽  
Author(s):  
Soumitra Hazra ◽  
Dibyendu Nandy

ABSTRACT Although sunspots have been systematically observed on the Sun’s surface over the last four centuries, their magnetic properties have been revealed and documented only since the early 1900s. Sunspots typically appear in pairs of opposite magnetic polarities which have a systematic orientation. This polarity orientation is opposite across the equator – a trend that has persisted over the last century. Taken together with the configuration of the global poloidal field of the Sun – this phenomena is consistent with the dipolar parity state of an underlying magnetohydrodynamic dynamo. Although transient hemispheric asymmetry in sunspot emergence is observed, a global parity shift has never been observed. We simulate hemispheric asymmetry through introduction of random fluctuations in a computational dynamo model of the solar cycle and demonstrate that changes in parity are indeed possible in long-term simulations covering thousands of years. Quadrupolar modes are found to exist over significant fraction of the simulated time. In particular, we find that a parity shift in the underlying nature of the sunspot cycle is more likely to occur when sunspot activity dominates in any one hemisphere for a time which is significantly longer than the cycle period. We establish causal pathways connecting hemispheric asymmetry to parity flips mediated via a decoupling of the dynamo cycle period across the two solar hemispheres. Our findings indicate that the solar cycle may have resided in quadrupolar parity states in the past, and provides a possible pathway for predicting parity flips in the future.


1993 ◽  
Vol 132 ◽  
pp. 13-20
Author(s):  
J. Kurths ◽  
U. Feudel ◽  
W. Jansen

AbstractApplying modern techniques of time series analysis, there are serious indications that the dynamics of the global solar activity is a low dimensional chaos. A simple non-linear dynamo model is qualitatively studied exhibiting a rich dynamical behaviour from steady state via some bifurcation to a chaotic regime.


2012 ◽  
Vol 8 (S294) ◽  
pp. 37-47
Author(s):  
Arnab Rai Choudhuri

AbstractWe point out the difficulties in carrying out direct numerical simulation of the solar dynamo problem and argue that kinematic mean-field models are our best theoretical tools at present for explaining various aspects of the solar cycle in detail. The most promising kinematic mean-field model is the flux transport dynamo model, in which the toroidal field is produced by differential rotation in the tachocline, the poloidal field is produced by the Babcock–Leighton mechanism at the solar surface and the meridional circulation plays a crucial role. Depending on whether the diffusivity is high or low, either the diffusivity or the meridional circulation provides the main transport mechanism for the poloidal field to reach the bottom of the convection zone from the top. We point out that the high-diffusivity flux transport dynamo model is consistent with various aspects of observational data. The irregularities of the solar cycle are primarily produced by fluctuations in the Babcock–Leighton mechanism and in the meridional circulation. We summarize recent work on the fluctuations of meridional circulation in the flux transport dynamo, leading to explanations of such things as the Waldmeier effect.


Sign in / Sign up

Export Citation Format

Share Document