scholarly journals GRB 171205A/SN 2017iuk: A local low-luminosity gamma-ray burst

2018 ◽  
Vol 619 ◽  
pp. A66 ◽  
Author(s):  
V. D’Elia ◽  
S. Campana ◽  
A. D’Aì ◽  
M. De Pasquale ◽  
S. W. K. Emery ◽  
...  

Context. Gamma-ray bursts (GRBs) occurring in the local Universe constitute an interesting sub-class of the GRB family, since their luminosity is on average lower than that of their cosmological analogs. Attempts to understand in a global way this peculiar behaviour is still not possible, since the sample of low redshift GRBs is small, and the properties of individual objects are too different from each other. In addition, their closeness (and consequently high fluxes) make these sources ideal targets for extensive follow-up even with small telescopes, considering also that these GRBs are conclusively associated with supernova (SN) explosions. Aims. We aim to contribute to the study of local bursts by reporting the case of GRB 171205A. This source was discovered by Swift Burst Alert Telescope (BAT) on 2017, December 5 and soon associated with a low redshift host galaxy (z = 0.037), and an emerging SN (SN 2017iuk). Methods. We analyzed the full Swift dataset, comprising the UV-Optical Telescope (UVOT), X-ray Telescope (XRT) and BAT data. In addition, we employed the Konus-Wind high energy data as a valuable extension at γ-ray energies. Results. The photometric SN signature is clearly visible in the UVOT u, b and ν filters. The maximum emission is reached at ∼13 (rest frame) days, and the whole bump resembles that of SN 2006aj, but lower in magnitude and with a shift in time of +2 d. A prebump in the ν-band is also clearly visible, and this is the first time that such a feature is not observed achromatically in GRB–SNe. Its physical origin cannot be easily explained. The X-ray spectrum shows an intrinsic Hydrogen column density NH,int = 7.4+4.1−3.6 × 1020 cm−2, which is at the low end of the N H, int, even considering just low redshift GRBs. The spectrum also features a thermal component, which is quite common in GRBs associated with SNe, but whose origin is still a matter of debate. Finally, the isotropic energy in the γ-ray band, Eiso = 2.18+0.63−5.0 × 1049 erg, is lower than those of cosmological GRBs. Combining this value with the peak energy in the same band, Ep = 125+141−37 keV, implies that GRB 171205A is an outlier of the Amati relation, as are some other low redshift GRBs, and its emission mechanism should be different from that of canonical, farther away GRBs.

2019 ◽  
Vol 486 (2) ◽  
pp. 2471-2476 ◽  
Author(s):  
B Gendre ◽  
Q T Joyce ◽  
N B Orange ◽  
G Stratta ◽  
J L Atteia ◽  
...  

Abstract Ultra-long gamma-ray bursts are a class of high-energy transients lasting several hours. Their exact nature is still elusive, and several models have been proposed to explain them. Because of the limited coverage of wide-field gamma-ray detectors, the study of their prompt phase with sensitive narrow-field X-ray instruments could help in understanding the origin of ultra-long GRBs. However, the observers face a true problem in rapidly activating follow-up observations, due to the challenging identification of an ultra-long GRB before the end of the prompt phase. We present here a comparison of the prompt properties available after a few tens of minutes of a sample of ultra-long GRBs and normal long GRBs, looking for prior indicators of the long duration. We find that there is no such clear prior indicator of the duration of the burst. We also found that statistically, a burst lasting at least 10 and 20 minutes has respectively $28{{\ \rm per\ cent}}$ and $50{{\ \rm per\ cent}}$ probability to be an ultralong event. These findings point towards a common central engine for normal long and ultra-long GRBs, with the collapsar model privileged.


2019 ◽  
Vol 492 (3) ◽  
pp. 3728-3741
Author(s):  
Barbara Balmaverde ◽  
A Caccianiga ◽  
R Della Ceca ◽  
A Wolter ◽  
A Belfiore ◽  
...  

ABSTRACT The REX (Radio-Emitting X-ray sources) is a catalogue produced by cross-matching X-ray data from the ROSAT-PSPC archive of pointed observations and radio data from the NRAO VLA Sky Survey, aimed at the selection of blazars. From the REX catalogue, we select a well-defined and statistically complete sample of high-energy peaked BL Lac (HBL). HBL are expected to be the most numerous class of extragalactic TeV-emitting sources. Specifically, we have considered only the REX sources in the currently planned CTA extragalactic survey area satisfying specific criteria and with an optical spectroscopic confirmation. We obtain 46 HBL candidates that we called Te-REX (TeV-emitting REX). We estimate the very high-energy gamma-ray emission, in the TeV domain, using an empirical approach i.e. using specific statistical relations between gamma-rays (at GeV energies) and radio/X-rays properties observed in bright HBL from the literature. We compare the spectral energy distributions (SEDs) with the sensitivities of current and upcoming Cherenkov telescopes and we predict that 14 Te-REX could be detectable with 50 h of observations of CTA and 7 of them also with current Cherenkov facilities in 50 h. By extrapolating these numbers on the total extragalactic sky, we predict that about 800 HBL could be visible in pointed CTA observations and ∼400 with current Cherenkov telescopes in 50 h. Interestingly, our predictions show that a non-negligible fraction (∼30 per cent) of the HBL that will be detectable by CTA is composed of relatively weak objects whose optical nuclear emission is swamped by the host-galaxy light and not (yet) detected by Fermi-LAT.


2018 ◽  
Vol 617 ◽  
pp. A122 ◽  
Author(s):  
D. A. Kann ◽  
P. Schady ◽  
E. F. Olivares ◽  
S. Klose ◽  
A. Rossi ◽  
...  

Context. Afterglows of gamma-ray bursts (GRBs) are simple in the most basic model, but can show many complex features. The ultra-long duration GRB 111209A, one of the longest GRBs ever detected, also has the best-monitored afterglow in this rare class of GRBs. Aims. We want to address the question whether GRB 111209A was a special event beyond its extreme duration alone, and whether it is a classical GRB or another kind of high-energy transient. The afterglow may yield significant clues. Methods. We present afterglow photometry obtained in seven bands with the GROND imager as well as in further seven bands with the Ultraviolet/Optical Telescope (UVOT) on-board the Neil Gehrels Swift Observatory. The light curve is analysed by multi-band modelling and joint fitting with power-laws and broken power-laws, and we use the contemporaneous GROND data to study the evolution of the spectral energy distribution. We compare the optical afterglow to a large ensemble we have analysed in earlier works, and especially to that of another ultra-long event, GRB 130925A. We furthermore undertake a photometric study of the host galaxy. Results. We find a strong, chromatic rebrightening event at ≈0.8 days after the GRB, during which the spectral slope becomes redder. After this, the light curve decays achromatically, with evidence for a break at about 9 days after the trigger. The afterglow luminosity is found to not be exceptional. We find that a double-jet model is able to explain the chromatic rebrightening. The afterglow features have been detected in other events and are not unique. Conclusions. The duration aside, the GRB prompt emission and afterglow parameters of GRB 111209A are in agreement with the known distributions for these parameters. While the central engine of this event may differ from that of classical GRBs, there are multiple lines of evidence pointing to GRB 111209A resulting from the core-collapse of a massive star with a stripped envelope.


Author(s):  
J.-L. Atteia ◽  
B. Cordier ◽  
J. Wei

The Sino-French space mission SVOM is mainly designed to detect, localize and follow-up Gamma-Ray Bursts and other high-energy transients. The satellite, to be launched mid 2023, embarks two wide-field gamma-ray instruments and two narrow-field telescopes operating at X-ray and optical wavelengths. It is complemented by a dedicated ground segment encompassing a set of wide-field optical cameras and two 1-m class follow-up telescopes. In this contribution, we describe the main characteristics of the mission and discuss its scientific rationale and some original GRB studies that it will enable.


2018 ◽  
Vol 14 (A30) ◽  
pp. 53-60
Author(s):  
Daniel A. Schwartz

AbstractQuasars with flat radio spectra and one-sided, arc-second scale, ≈ 100 mJy GHz radio jets are found to have similar scale X-ray jets in about 60% of such objects, even in short 5 to 10 ks Chandra observations. Jets emit in the GHz band via synchrotron radiation, as known from polarization measurements. The X-ray emission is explained most simply, i.e. with the fewest additional parameters, as inverse Compton (iC) scattering of cosmic microwave background (cmb) photons by the relativistic electrons in the jet. With physics based assumptions, one can estimate enthalpy fluxes upwards of 1046 erg s−1, sufficient to reverse cooling flows in clusters of galaxies, and play a significant role in the feedback process which correlates the masses of black holes and their host galaxy bulges. On a quasar-by-quasar basis, we can show that the total energy to power these jets can be supplied by the rotational energy of black holes with spin parameters as low as a = 0.3. For a few bright jets at redshifts less than 1, the Fermi gamma ray observatory shows upper limits at 10 Gev which fall below the fluxes predicted by the iC/cmb mechanism, proving the existence of multiple relativistic particle populations. At large redshifts, the cmb energy density is enhanced by a factor (1+z)4, so that iC/cmb must be the dominant mechanism for relativistic jets unless their rest frame magnetic field strength is hundreds of micro-Gauss.


2021 ◽  
Vol 922 (2) ◽  
pp. 237
Author(s):  
Xiangyu Ivy Wang ◽  
Xutao Zheng ◽  
Shuo Xiao ◽  
Jun Yang ◽  
Zi-Ke Liu ◽  
...  

Abstract The Chinese CubeSat Mission, Gamma Ray Integrated Detectors (GRID), recently detected its first gamma-ray burst, GRB 210121A, which was jointly observed by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM). This burst is confirmed by several other missions, including Fermi and Insight-HXMT. We combined multimission observational data and performed a comprehensive analysis of the burst’s temporal and spectral properties. Our results show that the burst is relatively special in its high peak energy, thermal-like low-energy indices, and large fluence. By putting it to the E p –E γ,iso relation diagram with assumed distance, we found that this burst can be constrained at the redshift range of [0.3, 3.0]. The thermal spectral component is also confirmed by the direct fit of the physical models to the observed spectra. Interestingly, the physical photosphere model also constrained a redshift of z ∼ 0.3 for this burst, which helps us to identify a host galaxy candidate at such a distance within the location error box. Assuming that the host galaxy is real, we found that the burst can be best explained by the photosphere emission of a typical fireball with an initial radius of r 0 ∼ 3.2 × 107 cm.


2018 ◽  
Vol 168 ◽  
pp. 04008
Author(s):  
Daria Primorac ◽  
Remo Ruffini ◽  
Giovanni Battista Pisani ◽  
Yerlan Aimuratov ◽  
Carlo Luciano Biancol ◽  
...  

Bright gamma-ray burst (GRB) 110731A was simultaneously observed by Fermi and Swift observatories, with a follow up optical observation which inferred the redshift of z = 2.83. Thus, available data are spanning from optical to high energy (GeV) emission. We analyze these data within the induced gravitational collapse (IGC) paradigm, recently introduced to explain temporal coincidence of some long GRBs with type Ic supernovae. The case of binary-driven hypcrnova (BdHN) assumes a close system, which starts as an evolved core - neutron star binary. After the core-collapse event, the new NS - black hole system is formed, emitting the GRB in the process. We performed the time-resolved and time-integrated analysis of the Fermi data. Preliminary results gave isotropic energy Eiso = 6.05 × 1053 erg and the total P-GRB energy of Ep–GRB = 3.7 × 1052 erg. At transparency point we found a Lorentz factor Γ ~ 2.17 × 103 laboratory radius of 8.33 x 1013 cm, P-GRB observed temperature of 168 keV and a baryon load B = 4.35 × 10-4. Simulated light-curve and prompt emission spectra showed the average circum burst medium density to be n ~ 0.03 particles per cm3. We reproduced the X-ray light-curve within the rest-frame of the source, finding the common late power-law behavior, with α = –1.22. Considering these results, we interpret GRB 110731A as a member of a BdHNe group.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


Author(s):  
Frédéric Marin

Astronomical X-ray polarimetry was first explored in the end of the 60's by pioneering rocket instruments. The craze arising from the first discoveries on stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters on-board of early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled to long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000's, the possibility to observe astronomical X-ray polarization is rising again and scientists are now ready to explore the high energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (both rockets, balloons and satellites) will open a new observational windows. A wind of renewal blows over the area of X-ray polarimetry and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of interest for astronomical X-ray polarimetry.


Sign in / Sign up

Export Citation Format

Share Document