scholarly journals IFU investigation of possible Lyman continuum escape from Mrk 71/NGC 2366

2019 ◽  
Vol 623 ◽  
pp. A145 ◽  
Author(s):  
Genoveva Micheva ◽  
Edmund Christian Herenz ◽  
Martin M. Roth ◽  
Göran Östlin ◽  
Philipp Girichidis

Context. Mrk 71/NGC 2366 is the closest green pea (GP) analog and candidate Lyman Continuum (LyC) emitter. Recently, 11 LyC-leaking GPs have been detected through direct observations of the ionizing continuum, making this the most abundant class of confirmed LyC-emitters at any redshift. High resolution, multiwavelength studies of GPs can lead to an understanding of the method(s), through which LyC escapes from these galaxies. Aims. The proximity of Mrk 71/NCG 2366 offers unprecedented detail on the inner workings of a GP analog, and enables us to identify the mechanisms of LyC escape. Methods. We used 5825–7650 Å integral field unit PMAS observations to study the kinematics and physical conditions in Mrk 71. An electron density map was obtained from the [S II] ratio. A fortuitous second order contamination by the [O II] λ3727 doublet enabled the construction of an electron temperature map. Resolved maps of sound speed, thermal broadening, “true” velocity dispersion, and Mach number were obtained and compared to the high resolution magnetohydrodynamic SImulating the LifeCycle of molecular Clouds (SILCC) simulations. Results. Two regions of increased velocity dispersion indicative of outflows are detected to the north and south of the super star cluster, knot B, with redshifted and blueshifted velocities, respectively. We confirm the presence of a faint broad kinematical component, which is seemingly decoupled from the outflow regions, and is fainter and narrower than previously reported in the literature. Within uncertainties, the low- and high-ionization gasses move together. Outside of the core of Mrk 71, an increase in Mach numbers is detected, implying a decrease in gas density. Simulations suggest this drop in density can be as high as ∼4 dex, down to almost optically thin levels, which would imply a nonzero LyC escape fraction along the outflows even when assuming all of the detected H I gas is located in front of Mrk 71 in the line of sight. Conclusions. Our results strongly indicate that kinematical feedback is an important ingredient for LyC leakage in GPs.

1970 ◽  
Vol 1 (8) ◽  
pp. 363-364 ◽  
Author(s):  
R. G. Giovanelli

It has long been known that Fraunhofer lines show variations in intensity from place to place over the Sun’s surface, these being particularly noticeable in spectroheliograms obtained in the strong chromospheric lines. An early account of the weaker Unes was given by d’Azam-buja. McMath, Mohler, Pierce and Goldberg attributed intensity increases in (or decreases in depth of) metallic spectral lines to local temperature increases. Sheeley used high-resolution spectra to study these line weakenings further, finding them where, and only where, strong non-spot magnetic fields occurred. He also reported that in many cases the continuum in such regions was of reduced intensity, suggesting that fields often occur in the dark lanes and pores in the granulation. Spectroheliograms obtained in the cores of the weakened lines (e.g., Fel 6302.5Å) by Chapman and Sheeley showed that the bright network which these weakenings form appears as a sequence of sharp, bright points in the cores of the fainter lines and the wings of stronger lines but is more diffuse in the cores of stronger lines. They found the bright network in Zeeman-insensitive Unes (e.g., 5123.7A) also, indicating that it is due, at least in part, to variations in physical conditions. Lines of low ionization and excitation are weakened more than those of high ionization and excitation, and they attributed this to a temperature increase by 100-200 °K in the region of formation of the line cores ; a similar increase of 250 °K was found by Harvey and Livingston.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


1970 ◽  
Vol 36 ◽  
pp. 271-273
Author(s):  
B. B. Jones ◽  
B. C. Boland ◽  
R. Wilson ◽  
S. T. F. Engstrom

A high-resolution solar spectrum in the range 2000–2200 Å was obtained in a recent flight of a sunpointing Skylark rocket. This was launched at 04.21 hr UT on April 22, 1969 from Woomera and reached an apogee of 178 km. An optical alignment system operating on the main vehicle pointing system gave a net stabilisation of ±3 arc sec in the position of the solar image relative to the spectrograph slit. The slit, of length 1.0 mm, was set in the north-east quadrant parallel to and 5 arc min from the north/south axis, its lower edge being 1 arc min from the equator. The roll control of ±2.5° was provided entirely by the standard Elliott Bros. type of vehicle stabilisation.


2020 ◽  
Vol 35 (S1) ◽  
pp. S38-S42
Author(s):  
Soraia Rodrigues de Azeredo ◽  
Roberto Cesareo ◽  
Angel Guillermo Bustamante Dominguez ◽  
Ricardo Tadeu Lopes

Precious ornaments from the Museum Royal Tombs of Sipán were analyzed by X-ray computed microtomography (microCT). The ornaments analyzed were golden earrings produced by the Moche culture that flourished along the north coast of present-day Peru between approximately 100 and 600 AD. Sipán, also known as Huava Rajada, is a mochica archaeological complex in the north of Peru. In particular, the spectacular jewelry, mainly composed of gold, silver, and copper alloys, gilded copper, and tumbaga, from the Museum “Royal Tombs of Sipán,” in Lambayeque, north of Peru, are some of the most sophisticated metalworking ever produced of pre-Columbian America. A portable microCT system consisting of a high-resolution flat panel detector and a mini X-ray tube were used for the structural analysis of these ornaments. The microCT images show parts of the internal structure, highlighting the manufacturing technique and gold sheets joining techniques of the Moche artisans. Furthermore, the advantage of using the portable microCT system for nondestructive testing is clear when the sample cannot be taken to the laboratory.


2010 ◽  
Vol 37 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Robert H. Byrne ◽  
Sabine Mecking ◽  
Richard A. Feely ◽  
Xuewu Liu

2010 ◽  
Vol 6 (S272) ◽  
pp. 398-399 ◽  
Author(s):  
Carol E. Jones ◽  
Christopher Tycner ◽  
Jessie Silaj ◽  
Ashly Smith ◽  
T. A. Aaron Sigut

AbstractHα high resolution spectroscopy combined with detailed numerical models is used to probe the physical conditions, such as density, temperature, and velocity of Be star disks. Models have been constructed for Be stars over a range in spectral types and inclination angles. We find that a variety of line shapes can be obtained by keeping the inclination fixed and changing density alone. This is due to the fact that our models account for disk temperature distributions self-consistently from the requirement of radiative equilibrium. A new analytical tool, called the variability ratio, was developed to identify emission-line stars at particular stages of variability. It is used in this work to quantify changes in the Hα equivalent widths for our observed spectra.


Sign in / Sign up

Export Citation Format

Share Document