scholarly journals A radio census of the massive stellar cluster Westerlund 1

2019 ◽  
Vol 632 ◽  
pp. A38
Author(s):  
H. Andrews ◽  
D. Fenech ◽  
R. K. Prinja ◽  
J. S. Clark ◽  
L. Hindson

Context. Massive stars and their stellar winds are important for a number of feedback processes. The mass lost in the stellar wind can help determine the end-point of the star as a neutron star (NS) or a black hole (BH). However, the impact of mass loss on the post-main sequence evolutionary stage of massive stars is not well understood. Westerlund 1 is an ideal astrophysical laboratory in which to study massive stars and their winds in great detail over a large range of different evolutionary phases. Aims. We aim to study the radio emission from Westerlund 1, in order to measure radio fluxes from the population of massive stars, and determine mass-loss rates and spectral indices where possible. Methods. Observations were carried out in 2015 and 2016 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz using multiple configurations, with maximum baselines ranging from 750 m to 6 km. Results. Thirty stars are detected in the radio from the fully concatenated dataset, ten of which are Wolf-Rayet stars (WRs) (predominantly late type WN stars), five yellow hypergiants (YHGs), four red supergiants (RSGs), one luminous blue variable (LBV), the sgB[e] star W9, and several OB supergiants. New source detections in the radio are found for five WR stars, and five OB supergiants. These detections lead to evidence for three new OB supergiant binary candidates, which is inferred from derived spectral index limits. Conclusions. Spectral indices and index limits were determined for massive stars in Westerlund 1. For cluster members found to have partially optically thick emission, mass-loss rates were calculated. Under the approximation of a thermally emitting stellar wind and a steady mass-loss rate, clumping ratios were then estimated for eight WRs. Diffuse radio emission was detected throughout the cluster. Detections of knots of radio emission with no known stellar counterparts indicate the highly clumped structure of this intra-cluster medium, likely shaped by a dense cluster wind.

2018 ◽  
Vol 14 (S346) ◽  
pp. 83-87
Author(s):  
Vikram V. Dwarkadas

AbstractMassive stars lose a considerable amount of mass during their lifetime. When the star explodes as a supernova (SN), the resulting shock wave expands in the medium created by the stellar mass-loss. Thermal X-ray emission from the SN depends on the square of the density of the ambient medium, which in turn depends on the mass-loss rate (and velocity) of the progenitor wind. The emission can therefore be used to probe the stellar mass-loss in the decades or centuries before the star’s death.We have aggregated together data available in the literature, or analysed by us, to compute the X-ray lightcurves of almost all young supernovae detectable in X-rays. We use this database to explore the mass-loss rates of massive stars that collapse to form supernovae. Mass-loss rates are lowest for the common Type IIP supernovae, but increase by several orders of magnitude for the highest luminosity X-ray SNe.


1981 ◽  
Vol 59 ◽  
pp. 265-270
Author(s):  
L.R. Yungelson ◽  
A.G. Massevitch ◽  
A.V. Tutukov

It is shown that mass loss by stellar wind with rates observed in O, B-stars cannot change qualitatively their evolution in the core hydrogen-burning stage. The effects, that are usually attributed to the mass loss, can be explained by other causes: e.g., duplicity or enlarged chemically homogeneous stellar cores.The significance of mass loss by stellar wind for the evolution of massive stars was studied extensively by numerous authors (see e.g. Chiosi et al. (1979) and references therein). However, the problem is unclear as yet. There does not exist any satisfactory theory of mass loss by stars. Therefore one is usually forced to assume that mass loss rate depends on some input parameters.


2019 ◽  
Vol 622 ◽  
pp. A123 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. Ramos-Medina ◽  
C. Sánchez Contreras ◽  
P. García-Lario

Context. This is the second paper of a series making use of Herschel/PACS spectroscopy of evolved stars in the THROES catalogue to study the inner warm regions of their circumstellar envelopes (CSEs). Aims. We analyse the CO emission spectra, including a large number of high-J CO lines (from J = 14–13 to J = 45–44, ν = 0), as a proxy for the warm molecular gas in the CSEs of a sample of bright carbon-rich stars spanning different evolutionary stages from the asymptotic giant branch to the young planetary nebulae phase. Methods. We used the rotational diagram (RD) technique to derive rotational temperatures (Trot) and masses (MH2) of the envelope layers where the CO transitions observed with PACS arise. Additionally, we obtained a first order estimate of the mass-loss rates and assessed the impact of the opacity correction for a range of envelope characteristic radii. We used multi-epoch spectra for the well-studied C-rich envelope IRC+10216 to investigate the impact of CO flux variability on the values of Trot and MH2. Results. The sensitivity of PACS allowed for the study of higher rotational numbers than before indicating the presence of a significant amount of warmer gas (∼200 − 900 K) that is not traceable with lower J CO observations at submillimetre/millimetre wavelengths. The masses are in the range MH2 ∼ 10−2 − 10−5 M⊙, anticorrelated with temperature. For some strong CO emitters we infer a double temperature (warm T¯rot ∼ 400 K and hot T¯rot ∼ 820 K) component. From the analysis of IRC+10216, we corroborate that the effect of line variability is perceptible on the Trot of the hot component only, and certainly insignificant on MH2 and, hence, the mass-loss rate. The agreement between our mass-loss rates and the literature across the sample is good. Therefore, the parameters derived from the RD are robust even when strong line flux variability occurs, and the major source of uncertainty in the estimate of the mass-loss rate is the size of the CO-emitting volume.


2020 ◽  
Vol 492 (4) ◽  
pp. 5994-6006 ◽  
Author(s):  
Emma R Beasor ◽  
Ben Davies ◽  
Nathan Smith ◽  
Jacco Th van Loon ◽  
Robert D Gehrz ◽  
...  

ABSTRACT Evolutionary models have shown the substantial effect that strong mass-loss rates ($\dot{M}$s) can have on the fate of massive stars. Red supergiant (RSG) mass-loss is poorly understood theoretically, and so stellar models rely on purely empirical $\dot{M}$–luminosity relations to calculate evolution. Empirical prescriptions usually scale with luminosity and effective temperature, but $\dot{M}$ should also depend on the current mass and hence the surface gravity of the star, yielding more than one possible $\dot{M}$ for the same position on the Hertzsprung–Russell diagram. One can solve this degeneracy by measuring $\dot{M}$ for RSGs that reside in clusters, where age and initial mass (Minit) are known. In this paper we derive $\dot{M}$ values and luminosities for RSGs in two clusters, NGC 2004 and RSGC1. Using newly derived Minit measurements, we combine the results with those of clusters with a range of ages and derive an Minit-dependent $\dot{M}$ prescription. When comparing this new prescription to the treatment of mass-loss currently implemented in evolutionary models, we find models drastically overpredict the total mass-loss, by up to a factor of 20. Importantly, the most massive RSGs experience the largest downward revision in their mass-loss rates, drastically changing the impact of wind mass-loss on their evolution. Our results suggest that for most initial masses of RSG progenitors, quiescent mass-loss during the RSG phase is not effective at removing a significant fraction of the H-envelope prior to core-collapse, and we discuss the implications of this for stellar evolution and observations of SNe and SN progenitors.


1980 ◽  
Vol 5 ◽  
pp. 541-547
Author(s):  
H. F. Henrichs

A number of massive stars of early type is found in X-ray binary systems. The catalog of Bradt et al. (1979) contains 21 sources optically identified with massive stars ranging in spectral type from 06 to B5 out of which 13 are (nearly) unevolved stars and 8 are supergiants. Single stars of this type generally show moderate to strong stellar winds. The X-rays in these binaries originate from accretion onto a compact companion (we restrict the discussion to this type of X-rays).We consider the compact star as a probe traveling through the stellar wind. This probe enables us to derive useful information about the mass outflow of massive stars.After presenting the basic data we derive an upper limit to mass loss rates of unevolved early type stars by studying X-ray pulsars. Next we consider theoretical predictions concerning the influence of X-rays on the stellar wind and compare these with the observations. Finally, using new data from IUE, we draw some conclusions about mass loss rates and velocity laws as derived from X-ray binaries.


2011 ◽  
Vol 7 (S279) ◽  
pp. 29-33
Author(s):  
Jorick S. Vink

AbstractThe fate of massive stars up to 300M⊙ is highly uncertain. Do these objects produce pair-instability explosions, or normal Type Ic supernovae? In order to address these questions, we need to know their mass-loss rates during their lives. Here we present mass-loss predictions for very massive stars (VMS) in the range of 60-300M⊙. We use a novel method that simultaneously predicts the wind terminal velocities v∞ and mass-loss rate Ṁ as a function of the stellar parameters: (i) luminosity/mass Γ, (ii) metallicity Z, and (iii) effective temperature Teff. Using our results, we evaluate the likely outcomes for the most massive stars.


1988 ◽  
Vol 108 ◽  
pp. 148-149
Author(s):  
C. Doom

Wolf-Rayet (WR) stars are the descendants of massive stars that have lost their hydrogen rich envelope. Recently more accurate data on WR stars have become available: mass-loss rates (van der Hucht et al. 1986), radii and luminosities (Underhill 1983, Nussbaumer et al. 1982).It may therefore be worthwhile to investigate if combinations of observed parameters shed some light on the structure of the extended stellar wind of WR stars.In many WR stars the photosphere is situated in the stellar wind. We assume that the wind is stationary and isotropic. Further we assume a velocity law v(r)=v∞(1−Rs/r)β where v∞ is the terminal velocity of the wind in km/s, Rs is the radius where the wind acceleration starts and β > 0 is a free parameter. We can then easily compute the level R in the wind where the photosphere is located (de Loore et al. 1982): R is the solution of the equation 6.27 10−9 τat R v∞/ = fβ(Rs/R) where τat is the optical depth at the photosphere (2/3 or 1), (>0) is the mass loss rate in M⊙/yr and fβ > 1 is a slowly varying function (Doom 1987).


2018 ◽  
Vol 617 ◽  
pp. A137 ◽  
Author(s):  
D. M. Fenech ◽  
J. S. Clark ◽  
R. K. Prinja ◽  
S. Dougherty ◽  
F. Najarro ◽  
...  

Massive stars play an important role in both cluster and galactic evolution and the rate at which they lose mass is a key driver of both their own evolution and their interaction with the environment up to and including their terminal SNe explosions. Young massive clusters provide an ideal opportunity to study a co-eval population of massive stars, where both their individual properties and the interaction with their environment can be studied in detail. We aim to study the constituent stars of the Galactic cluster Westerlund 1 in order to determine mass-loss rates for the diverse post-main sequence population of massive stars. To accomplish this we made 3mm continuum observations with the Atacama Large Millimetre/submillimetre Array. We detected emission from 50 stars in Westerlund 1, comprising all 21 Wolf-Rayets within the field of view, plus eight cool and 21 OB super-/hypergiants. Emission nebulae were associated with a number of the cool hypergiants while, unexpectedly, a number of hot stars also appear spatially resolved. We were able to measure the mass-loss rates for a unique population of massive post-main sequence stars at every stage of evolution, confirming a significant increase as stars transitioned from OB supergiant to WR states via LBV and/or cool hypergiant phases. Fortuitously, the range of spectral types exhibited by the OB supergiants provides a critical test of radiatively-driven wind theory and in particular the reality of the bi-stability jump. The extreme mass-loss rate inferred for the interacting binary Wd1-9 in comparison to other cluster members confirmed the key role binarity plays in massive stellar evolution. The presence of compact nebulae around a number of OB and WR stars is unexpected; by analogy to the cool super-/hypergiants we attribute this to confinement and sculpting of the stellar wind via interaction with the intra-cluster medium/wind. Given the morphologies of core collapse SNe depend on the nature of the pre-explosion circumstellar environment, if this hypothesis is correct then the properties of the explosion depend not just on the progenitor, but also the environment in which it is located.


2011 ◽  
Vol 7 (S279) ◽  
pp. 351-352
Author(s):  
Yoshitomo Maeda ◽  
Yasuharu Sugawara ◽  

AbstractBy monitoring WC7 and the O5.5 binary WR 140 with the Suzaku telescope, we demonstrate a new method to measure the mass loss rates of both stars. By using the absorption column density, we found a mass-loss rate for the WC7 component: ṀWC7 ≈ 1.2 × 10−5 M⊙ yr−1. We also measured the mass-loss rate of the companion O component using a luminosity variation in phases: ṀO5.5 ≈ 5 × 10−7 M⊙ yr−1.


2010 ◽  
Vol 6 (S272) ◽  
pp. 99-100
Author(s):  
Brenda Pérez-Rendón ◽  
Horacio Pineda-León ◽  
Alfredo Santillán ◽  
Liliana Hernández-Cervantes

AbstractMassive main sequence stars are fast rotators. Stellar rotation affects massive stellar rotation due to rotationally induced mixing processes, the increase of mass loss rates, etc. and also affects the circumstellar medium due to their interaction with the stellar wind. The parameters of stellar winds depends on stellar parameters so the wind parameters change as the star evolves, coupling the evolution of circumstellar medium to the star itself. In this work we used a stellar code to build models of two massive stars (30 and 40 M⊙) and we used their wind parameters to simulate the hydrodynamics of their surrounding gas with the ZEUS-3D code in order to explore the effects of stellar rotation in the pre-supernova environments.


Sign in / Sign up

Export Citation Format

Share Document