scholarly journals Radio and high-energy emission of pulsars revealed by general relativity

2020 ◽  
Vol 639 ◽  
pp. A75
Author(s):  
Q. Giraud ◽  
J. Pétri

Context. According to current pulsar emission models, photons are produced within their magnetosphere and current sheet, along their separatrix, which is located inside and outside the light cylinder. Radio emission is favoured in the vicinity of the polar caps, whereas the high-energy counterpart is presumably enhanced in regions around the light cylinder, whether this is the magnetosphere and/or the wind. However, the gravitational effect on their light curves and spectral properties has only been sparsely researched. Aims. We present a method for simulating the influence that the gravitational field of the neutron star has on its emission properties according to the solution of a rotating dipole evolving in a slowly rotating neutron star metric described by general relativity. Methods. We numerically computed photon trajectories assuming a background Schwarzschild metric, applying our method to neutron star radiation mechanisms such as thermal emission from hot spots and non-thermal magnetospheric emission by curvature radiation. We detail the general-relativistic effects onto observations made by a distant observer. Results. Sky maps are computed using the vacuum electromagnetic field of a general-relativistic rotating dipole, extending previous works obtained for the Deutsch solution. We compare Newtonian results to their general-relativistic counterpart. For magnetospheric emission, we show that aberration and curvature of photon trajectories as well as Shapiro time delay significantly affect the phase delay between radio and high-energy light curves, although the characteristic pulse profile that defines pulsar emission is kept.

2001 ◽  
Vol 205 ◽  
pp. 408-409
Author(s):  
I.H. Stairs ◽  
S.E. Thorsett ◽  
J.H. Taylor ◽  
Z. Arzoumanian

We present the results of recent Arecibo observations of the relativistic double-neutron-star binary PSR B1534+12. The timing solution includes measurements of five post-Keplerian orbital parameters, whose values agree well with the predictions of general relativity. The observations show that the pulse profile is evolving secularly at both 1400 MHz and 430 MHz. This effect is similar to that seen in PSR B1913+16, and is almost certainly due to general relativistic precession of the pulsar's spin axis. We also present high-quality polarimetric profiles at both observing frequencies.


2021 ◽  
Vol 502 (2) ◽  
pp. 1843-1855
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT We perform 3D general-relativistic magnetohydrodynamic simulations to model the jet break-out from the ejecta expected to be produced in a binary neutron-star merger. The structure of the relativistic outflow from the 3D simulation confirms our previous results from 2D simulations, namely, that a relativistic magnetized outflow breaking out from the merger ejecta exhibits a hollow core of θcore ≈ 4°, an opening angle of θjet ≳ 10°, and is accompanied by a wind of ejected matter that will contribute to the kilonova emission. We also compute the non-thermal afterglow emission of the relativistic outflow and fit it to the panchromatic afterglow from GRB170817A, together with the superluminal motion reported from VLBI observations. In this way, we deduce an observer angle of $\theta _{\rm obs}= 35.7^{\circ \, \, +1.8}_{\phantom{\circ \, \, }-2.2}$. We further compute the afterglow emission from the ejected matter and constrain the parameter space for a scenario in which the matter responsible for the thermal kilonova emission will also lead to a non-thermal emission yet to be observed.


1992 ◽  
Vol 128 ◽  
pp. 214-216
Author(s):  
J. M. Weisberg ◽  
J. H. Taylor

AbstractAccording to general relativity, the spin axis of binary pulsar PSR 1913+16 should precess at a rate of 1.21 degrees per year. This precession will cause the pulse profile to change as our line of sight samples different pulsar latitudes. In order to search for this phenomenon, we have carefully monitored the pulse profile at 1408 MHz for 8.5 years. The ratio of flux density of the first to second pulse component has declined at a rate of approximately 1.65% per year, with some evidence of a steeper decrease over the past three years. We have detected no evidence for a change in the separation of the two components. We discuss the nature of the pulsar emission region in light of these results.


Universe ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Jérôme Pétri

Neutron stars are compact objects rotating at high speed, up to a substantial fraction of the speed of light (up to 20% for millisecond pulsars) and possessing ultra-strong electromagnetic fields (close to and sometimes above the quantum critical field of 4.4 × 10 9 T ). Moreover, due to copious e ± pair creation within the magnetosphere, the relativistic plasma surrounding the star is forced into corotation up to the light cylinder where the corotation speed reaches the speed of light. The neutron star electromagnetic activity is powered by its rotation which becomes relativistic in the neighborhood of this light cylinder. These objects naturally induce relativistic rotation on macroscopic scales about several thousands of kilometers, a crucial ingredient to trigger the central engine as observed on Earth. In this paper, we elucidate some of the salient features of this corotating plasma subject to efficient particle acceleration and radiation, emphasizing several problems and limitations concerning current theories of neutron star magnetospheres. Relativistic rotation in these systems is indirectly probed by the radiation produced within the magnetosphere. Depending on the underlying assumptions about particle motion and radiation mechanisms, different signatures on their light curves, spectra, pulse profiles and polarization angles are expected in their broadband electromagnetic emission. We show that these measurements put stringent constraints on the way to describe particle electrodynamics in a rotating neutron star magnetosphere.


2020 ◽  
Vol 633 ◽  
pp. A102
Author(s):  
◽  
H. Abdalla ◽  
R. Adam ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Context. PSR B1259–63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies. Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259–63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259–63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star’s circumstellar disc and/or the conditions under which the HE gamma-ray flares develop. Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014, and 2017 are analysed. Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron tp and two peaks coinciding with the times at which the neutron star crosses the companion’s circumstellar disc (~tp ± 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (~tp + 30 d) and at phases before the first disc crossing (~tp − 35 d). The spectral energy range now extends to below 200 GeV and up to ~45 TeV. Conclusions. PSR B1259–63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259–63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.


2020 ◽  
Vol 641 ◽  
pp. A15
Author(s):  
Tuomo Salmi ◽  
Valery F. Suleimanov ◽  
Joonas Nättilä ◽  
Juri Poutanen

We computed accurate atmosphere models of rotation-powered millisecond pulsars in which the polar caps of a neutron star (NS) are externally heated by magnetospheric return currents. The external ram pressure, energy losses, and stopping depth of the penetrating charged particles were computed self-consistently with the atmosphere model, instead of assuming a simplified deep-heated atmosphere in radiative equilibrium. We used exact Compton scattering formalism to model the properties of the emergent X-ray radiation. The deep-heating approximation was found to be valid only if most of the heat originates from ultra-relativistic bombarding particles with Lorentz factors of γ ≳ 100. In the opposite regime, the atmosphere attains a distinct two-layer structure with an overheated optically thin skin on top of an optically thick cool plasma. The overheated skin strongly modifies the emergent radiation: It produces a Compton-upscattered high-energy tail in the spectrum and alters the radiation beaming pattern from limb darkening to limb brightening for emitted hard X-rays. This kind of drastic change in the emission properties can have a significant impact on the inferred NS pulse profile parameters as performed, for example, by Neutron star Interior Composition ExploreR. Finally, the connection between the energy distribution of the return current particles and the atmosphere emission properties offers a new tool to probe the exact physics of pulsar magnetospheres.


1992 ◽  
Vol 128 ◽  
pp. 225-227
Author(s):  
R. C. Kapoor

AbstractAn estimate of the effect of light bending and redshift on pulsar beam characteristics has been made using a weak Kerr metric for the case of a 1.4 M⊙ neutron star with a radius in the range 6-10 km and rotation periods of 1.56 ms and 33 ms, respectively. Assuming that the pulsar emission has the form of a narrow conical beam directed away from the surface and is located within two stellar radii, the beam is found to be widened by a factor of ≤ 2 and to suffer a reduction in the intensity (flattening of the profile) by an order of magnitude or less. The effect is largest for the most rapidly rotating the neutron stars. For an emission region located beyond 20 km, the flattening is generally insignificant. The pulse profile is slightly asymmetrical due to dragging of the inertial frames. For millisecond periods, aberration tends to reverse the flattening effect of space-time curvature by narrowing the pulse and can completely overcome it for emission from a location beyond ≃30km. Although the pulse must slightly brighten up, a large redshift factor overcomes this effect to keep the pulse flattened for all neutron star radii considered here.


2020 ◽  
Vol 493 (2) ◽  
pp. 1874-1887 ◽  
Author(s):  
A Danilenko ◽  
A Karpova ◽  
D Ofengeim ◽  
Yu Shibanov ◽  
D Zyuzin

ABSTRACT We report results of XMM–Newton observations of a γ-ray pulsar J0633+0632 and its wind nebula. We reveal, for the first time, pulsations of the pulsar X-ray emission with a single sinusoidal pulse profile and a pulsed fraction of 23 ± 6 per cent in the 0.3–2 keV band. We confirm previous Chandra findings that the pulsar X-ray spectrum consists of thermal and non-thermal components. However, we do not find the absorption feature that was previously detected at about 0.8 keV. Thanks to the greater sensitivity of XMM–Newton, we get stronger constraints on spectral model parameters compared to previous studies. The thermal component can be equally well described by either blackbody or neutron star atmosphere models, implying that this emission is coming from either hot pulsar polar caps with a temperature of about 120 eV or from the colder bulk of the neutron star surface with a temperature of about 50 eV. In the latter case, the pulsar appears to be one of the coolest among other neutron stars of similar ages with estimated surface temperatures. We discuss cooling scenarios relevant to this neutron star. Using an interstellar absorption–distance relation, we also constrain the distance to the pulsar to the range of 0.7–2 kpc. Besides the pulsar and its compact nebula, we detect regions of weak large-scale diffuse non-thermal emission in the pulsar field and discuss their possible nature.


Author(s):  
Steven Carlip

This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


Sign in / Sign up

Export Citation Format

Share Document