scholarly journals Spatial vegetation distribution and zonal vegetation type on islands in southern part of the Lena Delta (Eastern Siberia)

2021 ◽  
Vol 38 ◽  
pp. 00071
Author(s):  
Nikolay Lashchinskiy

In this research spatial distribution of the different vegetation types on Lena Delta islands described in connection with their relief, time of formation and geological substrates. It was shown that zonal vegetation can be find only on third river terrace on gentle slopes. Because of continuous permafrost predominant vegetation is presented by hydro serial communities united into successional cycles. Zonal vegetation types occupy not more than 1-2% of the whole area.

2020 ◽  
Vol 12 (4) ◽  
pp. 603 ◽  
Author(s):  
Xiaoyu Meng ◽  
Xin Gao ◽  
Shengyu Li ◽  
Jiaqiang Lei

As a result of the unique geographical characteristics, pastoral lifestyle, and economic conditions in Mongolia, its fragile natural ecosystems are highly sensitive to climate change and human activities. The normalized difference vegetation index (NDVI) was employed in this study as an indicator of the growth status of vegetation. The Sen’s slope, Mann–Kendall test, and geographical detector modelling methods were used to assess the spatial and temporal changes of the NDVI in response to variations in natural conditions and human activities in Mongolia from 1982 to 2015. The corresponding individual and interactive driving forces, and the optimal range for the maximum NDVI value of vegetation distribution were also quantified. The area in which vegetation was degraded was roughly equal to the area of increase, but different vegetation types behaved differently. The desert steppe and the Gobi Desert both in arid regions have degraded significantly, whereas the meadow steppe and alpine steppe showed a significant upward trend. Precipitation can satisfactorily account for vegetation distribution. Changes of livestock quantity was the dominant factor influencing the changes of most vegetation types. The interactions of topographic factors and climate factors have significant effects on vegetation growth. In the region of annual precipitation between 331 mm and 596 mm, forest vegetation type and pine sandy soil type were found to be most suitable for the growth of vegetation in Mongolia. The findings of this study can help us to understand the appropriate range or type of environmental factors affecting vegetation growth in Mongolia, based on which we can apply appropriate interventions to effectively mitigate the impact of environmental changes on vegetation.


2007 ◽  
Vol 7 (1) ◽  
pp. 69-79 ◽  
Author(s):  
T. Wagner ◽  
S. Beirle ◽  
T. Deutschmann ◽  
M. Grzegorski ◽  
U. Platt

Abstract. A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm) reflectance structures (i.e. "fingerprint" structures) of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS), which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms). The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.


Biologia ◽  
2017 ◽  
Vol 72 (9) ◽  
Author(s):  
Aleksandra Cvetkovska-Gjorgjievska ◽  
Slavčo Hristovski ◽  
Dana Prelić ◽  
Lucija Šerić Jelaska ◽  
Valentina Slavevska-Stamenković ◽  
...  

AbstractCarabid fauna is not sufficiently explored in Central and Western Balkan areas, especially in mountain ecosystems with unique biodiversity which is a result of specific environmental factors and geologic history. Furthermore, distribution of species and adaptation to varying environmental parameters change along the altitudinal gradients. All this highlights the need for biodiversity and ecological studies in order to assess the state of the mountain ecosystems and conservation significance. Carabids as good bioindicator group can be used as a tool for monitoring those changes. The aim of this study was to analyse the differences of body size distribution and mean individual biomass (MIB) of ground beetle assemblages as a response of changing conditions and vegetation types along an altitudinal gradient on Belasitsa Mountain in south Macedonia. Both parameters significantly decreased with increasing altitude and were consequently associated with the vegetation type. Larger bodied individuals and higher values of MIB were recorded in the white oak and oriental hornbeam forest stands with the values decreasing in sessile oak forests towards submontane and montane beech forest stands. This research yielded first list of carabid species inhabiting Belasitsa Mountain with insight of carabid body length and biomass distribution along altitudinal gradient.


2021 ◽  
Author(s):  
Weihong Yan ◽  
Qiuwen Zhou ◽  
Dawei Peng ◽  
Xiaocha Wei ◽  
Xin Tang ◽  
...  

Abstract Humid karst ecosystems are fragile, with precipitation being the main source of soil moisture recharge. The process of soil moisture recharge and usage varies by vegetation type. To analyze the dynamics of soil moisture under different vegetation types during rainfall events, we continuously monitored soil moisture in arable land, grassland, shrub, and forest areas at 10-minute intervals from November 6, 2019, to January 6, 2020.The arable land was used as a control group. Soil moisture under the different vegetation types responded to light, moderate, and rainstorm events with large rainfall amounts. However, only the soil moisture in the grassland areas responded to a light rainfall event with a rainfall amount of 0.87 mm. The largest soil moisture recharge (12.63 mm) and decline (2.08%) were observed for the grassland areas, with the smallest observed for the forest areas. While the grassland areas showed the greatest decline in soil moisture following rainfall, they were more easily recharged during the winter rainfall events. Soil moisture in forests and shrubs was less recharged than in grasslands but also declined less. Therefore, forests and shrubs are better at retaining soil moisture in winter, which is informative for the formulation of a regional vegetation recovery model.


Koedoe ◽  
1995 ◽  
Vol 38 (1) ◽  
Author(s):  
G.J. Bredenkamp ◽  
H. Bezuidenhout

A procedure for the effective classification of large phytosociological data sets, and the combination of many data sets from various parts of the South African grasslands is demonstrated. The procedure suggests a region by region or project by project treatment of the data. The analyses are performed step by step to effectively bring together all releves of similar or related plant communities. The first step involves a separate numerical classification of each subset (region), and subsequent refinement by Braun- Blanquet procedures. The resulting plant communities are summarised in a single synoptic table, by calculating a synoptic value for each species in each community. In the second step all communities in the synoptic table are classified by numerical analysis, to bring related communities from different regions or studies together in a single cluster. After refinement of these clusters by Braun-Blanquet procedures, broad vegetation types are identified. As a third step phytosociological tables are compiled for each iden- tified broad vegetation type, and a comprehensive abstract hierarchy constructed.


2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


2018 ◽  
Vol 32 (1) ◽  
pp. 127-143 ◽  
Author(s):  
Dongmin Kim ◽  
Myong-In Lee ◽  
Eunkyo Seo

Abstract The Q10 value represents the soil respiration sensitivity to temperature often used for the parameterization of the soil decomposition process has been assumed to be a constant in conventional numerical models, whereas it exhibits significant spatial and temporal variation in the observations. This study develops a new parameterization method for determining Q10 by considering the soil respiration dependence on soil temperature and moisture obtained by multiple regression for each vegetation type. This study further investigates the impacts of the new parameterization on the global terrestrial carbon flux. Our results show that a nonuniform spatial distribution of Q10 tends to better represent the dependence of the soil respiration process on heterogeneous surface vegetation type compared with the control simulation using a uniform Q10. Moreover, it tends to improve the simulation of the relationship between soil respiration and soil temperature and moisture, particularly over cold and dry regions. The modification has an impact on the soil respiration and carbon decomposition process, which changes gross primary production (GPP) through controlling nutrient assimilation from soil to vegetation. It leads to a realistic spatial distribution of GPP, particularly over high latitudes where the original model has a significant underestimation bias. Improvement in the spatial distribution of GPP leads to a substantial reduction of global mean GPP bias compared with the in situ observation-based reference data. The results highlight that the enhanced sensitivity of soil respiration to the subsurface soil temperature and moisture introduced by the nonuniform spatial distribution of Q10 has contributed to improving the simulation of the terrestrial carbon fluxes and the global carbon cycle.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Carolina Moreno ◽  
Viviane G Ferro

Arctiinae are a species-rich subfamily of moth, with approximately 1,400 species in Brazil and 723 recorded in the Cerrado biome. A list of species of these moths was compiled during three years of sampling in four vegetation types within the Emas National Park. A total of 5,644 individuals belonging to 149 species were collected. About 67% of these species are new records for the Emas National Park, 31% for the State of Goiás and 9% for the Cerrado biome. Cerrado sensu stricto and semideciduous forests have higher species richness, followed by campo cerrado and campo sujo. The vegetation type with the highest number of exclusive species was the semideciduous forest, followed by cerrado sensu stricto, campo cerrado and campo sujo. The high species richness and the high proportion of new species records for Goiás and Cerrado reinforce the importance of the Emas National Park region as a center of diversity for this group of moths. The conservation of areas not yet cleared around the Park, including the creation of new protected areas, and the establishment of ecological corridors between these areas and the Park would be strategies to preserve the fauna of these moths.


Author(s):  
Brian Miller ◽  
Hank Harlow

Our objective is to establish a long-term monitoring project that will assess the abundance and densities of selected species of mammals at sites representing five defined vegetation types found in Grand Teton National Park. The term monitoring implies data collection over multiple years. Taking long term estimations of population composition before, during, and after biotic and abiotic changes provides needed information to assess the impacts of such changes and furnish useful options for management decisions. This standardized monitoring plan will provide information on small and medium-sized mammals that will (1) assess species use of habitat, (2) monitor changes in species composition as a result of environmental change, such as precipitation and temperature, (3) produce predictive models of small and medium-sized mammal distribution based on vegetation type, and (4) analyze the impact of wolf colonization on the mammal (and plant) community.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Gabriel Pavan Sabino ◽  
Vitor de Andrade Kamimura ◽  
Renan Borgiani ◽  
Rafael Konopczyk ◽  
Ernesto Pedro Dickfeldt ◽  
...  

Abstract: The Porto Ferreira State Park (PFSP) is located in the State of São Paulo southeastern Brazil, in an intriguing transitional area between the Atlantic Forest and Cerrado - both hotspots of biodiversity - represented mainly by the cerradão (CER), and the seasonal semideciduous forest (SSF), with its alluvial variation vegetation type (riparian forest - RP). Ecotonal areas play an important role in providing ecological and phytogeographic knowledge regarding the flora and vegetation of this region. Despite various studies on the PFSP, knowledge of this region remains fragmented. In this study, we aim to conduct an updated checklist of the PFSP vascular flora, including a compilation of all the studies conducted in this protected area, plus field work carried out by the authors from 2014 to 2017. In addition, given its ecotonal characteristics, we completed a floristic similarity analysis between the PFSP and other floristic surveys that examined the same vegetation types present in this study, to gain a better understanding of their phytogeographic relationships. Overall, 684 species, belonging to 387 genera and 107 families, were recorded. The SSF presented the richest vegetation type (478 species), followed by the CER (418) and the RP (231). The most diverse families were Fabaceae (64 species), Myrtaceae (41), Orchidaceae (39), Rubiaceae (37), Asteraceae (35), Bignoniaceae (26) and Malvaceae (20). Moreover, eight threatened species, at regional and national levels, were found. To date, 412 species have been added to the floristic list produced for the PFSP. The life forms with the highest number of species were trees (286 species), herbs (176) plus shrubs and subshrubs (123). Our research findings indicate floristic patterns with higher levels of similarity among species in geographical proximity, including those in ecotonal areas encompassing different vegetation types. These results rank the PFSP among some of the most species-rich conservation units with seasonal climates, and therefore is of great importance for plant conservation in the southeast of Brazil.


Sign in / Sign up

Export Citation Format

Share Document