Body size and mean individual biomass variation of ground-beetles community (Coleoptera: Carabidae) as a response to increasing altitude and associated vegetation types in mountainous ecosystem

Biologia ◽  
2017 ◽  
Vol 72 (9) ◽  
Author(s):  
Aleksandra Cvetkovska-Gjorgjievska ◽  
Slavčo Hristovski ◽  
Dana Prelić ◽  
Lucija Šerić Jelaska ◽  
Valentina Slavevska-Stamenković ◽  
...  

AbstractCarabid fauna is not sufficiently explored in Central and Western Balkan areas, especially in mountain ecosystems with unique biodiversity which is a result of specific environmental factors and geologic history. Furthermore, distribution of species and adaptation to varying environmental parameters change along the altitudinal gradients. All this highlights the need for biodiversity and ecological studies in order to assess the state of the mountain ecosystems and conservation significance. Carabids as good bioindicator group can be used as a tool for monitoring those changes. The aim of this study was to analyse the differences of body size distribution and mean individual biomass (MIB) of ground beetle assemblages as a response of changing conditions and vegetation types along an altitudinal gradient on Belasitsa Mountain in south Macedonia. Both parameters significantly decreased with increasing altitude and were consequently associated with the vegetation type. Larger bodied individuals and higher values of MIB were recorded in the white oak and oriental hornbeam forest stands with the values decreasing in sessile oak forests towards submontane and montane beech forest stands. This research yielded first list of carabid species inhabiting Belasitsa Mountain with insight of carabid body length and biomass distribution along altitudinal gradient.

1989 ◽  
Vol 19 (5) ◽  
pp. 550-556 ◽  
Author(s):  
M. P. Amaranthus ◽  
D. A. Perry

Douglas-fir seedlings were planted in cleared blocks within three adjacent vegetation types, whiteleaf manzanita, annual grass meadow, and an open stand of Oregon white oak, in southwest Oregon. Within subplots in each block, either pasteurized or unpasteurized soil from a nearby Pacific madrone stand was transferred to the planting holes of the seedlings; control seedlings received no madrone soil. Second-year survival averaged 92, 43, and 12% for seedlings planted on the manzanita, meadow, and oak sites, respectively. Growth differences generally paralleled survival differences. Added madrone soil, whether pasteurized or unpasteurized, did not influence survival, but growth of seedlings on the manzanita site was substantially increased by the addition of unpasteurized madrone soil. Unpasteurized madrone soil did not influence growth of seedlings in the meadow and the oak stand. Pasteurized madrone soil did not affect growth in any of the vegetation types. When added to the manzanita site, unpasteurized madrone soil nearly tripled the number of mycorrhizal root tips forming on seedlings and resulted in formation of a new mycorrhiza type not seen otherwise. As with growth, unpasteurized madrone soil had little or no effect in the other vegetation types. These results suggest that manzanita and madrone impose on soils a biological pattern that stimulates Douglas-fir growth and survival, and they add to the growing body of literature showing that root symbionts and rhizosphere organisms mediate interactions among plant species.


2007 ◽  
Vol 7 (1) ◽  
pp. 69-79 ◽  
Author(s):  
T. Wagner ◽  
S. Beirle ◽  
T. Deutschmann ◽  
M. Grzegorski ◽  
U. Platt

Abstract. A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm) reflectance structures (i.e. "fingerprint" structures) of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS), which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms). The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.


2021 ◽  
Author(s):  
Weihong Yan ◽  
Qiuwen Zhou ◽  
Dawei Peng ◽  
Xiaocha Wei ◽  
Xin Tang ◽  
...  

Abstract Humid karst ecosystems are fragile, with precipitation being the main source of soil moisture recharge. The process of soil moisture recharge and usage varies by vegetation type. To analyze the dynamics of soil moisture under different vegetation types during rainfall events, we continuously monitored soil moisture in arable land, grassland, shrub, and forest areas at 10-minute intervals from November 6, 2019, to January 6, 2020.The arable land was used as a control group. Soil moisture under the different vegetation types responded to light, moderate, and rainstorm events with large rainfall amounts. However, only the soil moisture in the grassland areas responded to a light rainfall event with a rainfall amount of 0.87 mm. The largest soil moisture recharge (12.63 mm) and decline (2.08%) were observed for the grassland areas, with the smallest observed for the forest areas. While the grassland areas showed the greatest decline in soil moisture following rainfall, they were more easily recharged during the winter rainfall events. Soil moisture in forests and shrubs was less recharged than in grasslands but also declined less. Therefore, forests and shrubs are better at retaining soil moisture in winter, which is informative for the formulation of a regional vegetation recovery model.


Koedoe ◽  
1995 ◽  
Vol 38 (1) ◽  
Author(s):  
G.J. Bredenkamp ◽  
H. Bezuidenhout

A procedure for the effective classification of large phytosociological data sets, and the combination of many data sets from various parts of the South African grasslands is demonstrated. The procedure suggests a region by region or project by project treatment of the data. The analyses are performed step by step to effectively bring together all releves of similar or related plant communities. The first step involves a separate numerical classification of each subset (region), and subsequent refinement by Braun- Blanquet procedures. The resulting plant communities are summarised in a single synoptic table, by calculating a synoptic value for each species in each community. In the second step all communities in the synoptic table are classified by numerical analysis, to bring related communities from different regions or studies together in a single cluster. After refinement of these clusters by Braun-Blanquet procedures, broad vegetation types are identified. As a third step phytosociological tables are compiled for each iden- tified broad vegetation type, and a comprehensive abstract hierarchy constructed.


2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Carolina Moreno ◽  
Viviane G Ferro

Arctiinae are a species-rich subfamily of moth, with approximately 1,400 species in Brazil and 723 recorded in the Cerrado biome. A list of species of these moths was compiled during three years of sampling in four vegetation types within the Emas National Park. A total of 5,644 individuals belonging to 149 species were collected. About 67% of these species are new records for the Emas National Park, 31% for the State of Goiás and 9% for the Cerrado biome. Cerrado sensu stricto and semideciduous forests have higher species richness, followed by campo cerrado and campo sujo. The vegetation type with the highest number of exclusive species was the semideciduous forest, followed by cerrado sensu stricto, campo cerrado and campo sujo. The high species richness and the high proportion of new species records for Goiás and Cerrado reinforce the importance of the Emas National Park region as a center of diversity for this group of moths. The conservation of areas not yet cleared around the Park, including the creation of new protected areas, and the establishment of ecological corridors between these areas and the Park would be strategies to preserve the fauna of these moths.


Author(s):  
Brian Miller ◽  
Hank Harlow

Our objective is to establish a long-term monitoring project that will assess the abundance and densities of selected species of mammals at sites representing five defined vegetation types found in Grand Teton National Park. The term monitoring implies data collection over multiple years. Taking long term estimations of population composition before, during, and after biotic and abiotic changes provides needed information to assess the impacts of such changes and furnish useful options for management decisions. This standardized monitoring plan will provide information on small and medium-sized mammals that will (1) assess species use of habitat, (2) monitor changes in species composition as a result of environmental change, such as precipitation and temperature, (3) produce predictive models of small and medium-sized mammal distribution based on vegetation type, and (4) analyze the impact of wolf colonization on the mammal (and plant) community.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Gabriel Pavan Sabino ◽  
Vitor de Andrade Kamimura ◽  
Renan Borgiani ◽  
Rafael Konopczyk ◽  
Ernesto Pedro Dickfeldt ◽  
...  

Abstract: The Porto Ferreira State Park (PFSP) is located in the State of São Paulo southeastern Brazil, in an intriguing transitional area between the Atlantic Forest and Cerrado - both hotspots of biodiversity - represented mainly by the cerradão (CER), and the seasonal semideciduous forest (SSF), with its alluvial variation vegetation type (riparian forest - RP). Ecotonal areas play an important role in providing ecological and phytogeographic knowledge regarding the flora and vegetation of this region. Despite various studies on the PFSP, knowledge of this region remains fragmented. In this study, we aim to conduct an updated checklist of the PFSP vascular flora, including a compilation of all the studies conducted in this protected area, plus field work carried out by the authors from 2014 to 2017. In addition, given its ecotonal characteristics, we completed a floristic similarity analysis between the PFSP and other floristic surveys that examined the same vegetation types present in this study, to gain a better understanding of their phytogeographic relationships. Overall, 684 species, belonging to 387 genera and 107 families, were recorded. The SSF presented the richest vegetation type (478 species), followed by the CER (418) and the RP (231). The most diverse families were Fabaceae (64 species), Myrtaceae (41), Orchidaceae (39), Rubiaceae (37), Asteraceae (35), Bignoniaceae (26) and Malvaceae (20). Moreover, eight threatened species, at regional and national levels, were found. To date, 412 species have been added to the floristic list produced for the PFSP. The life forms with the highest number of species were trees (286 species), herbs (176) plus shrubs and subshrubs (123). Our research findings indicate floristic patterns with higher levels of similarity among species in geographical proximity, including those in ecotonal areas encompassing different vegetation types. These results rank the PFSP among some of the most species-rich conservation units with seasonal climates, and therefore is of great importance for plant conservation in the southeast of Brazil.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9792
Author(s):  
Aluwani Nengovhela ◽  
Christiane Denys ◽  
Peter J. Taylor

Temporal changes in body size have been documented in a number of vertebrate species, with different contested drivers being suggested to explain these changes. Among these are climate warming, resource availability, competition, predation risk, human population density, island effects and others. Both life history traits (intrinsic factors such as lifespan and reproductive rate) and habitat (extrinsic factors such as vegetation type, latitude and elevation) are expected to mediate the existence of a significant temporal response of body size to climate warming but neither have been widely investigated. Using examples of rodents, we predicted that both life history traits and habitat might explain the probability of temporal response using two tests of this hypothesis. Firstly, taking advantage of new data from museum collections spanning the last 106 years, we investigated geographical and temporal variation in cranial size (a proxy for body size) in six African rodent species of two murid subfamilies (Murinae and Gerbillinae) of varying life history, degree of commensality, range size, and habitat. Two species, the commensal Mastomys natalensis, and the non-commensal Otomys unisulcatus showed significant temporal changes in body size, with the former increasing and the latter decreasing, in relation with climate warming. Commensalism could explain the increase in size with time due to steadily increasing food availability through increased agricultural production. Apart from this, we found no general life history or habitat predictors of a temporal response in African rodents. Secondly, in order to further test this hypothesis, we incorporated our data into a meta-analysis based on published literature on temporal responses in rodents, resulting in a combined dataset for 50 species from seven families worldwide; among these, 29 species showed no significant change, eight showed a significant increase in size, and 13 showed a decline in size. Using a binomial logistic regression model for these metadata, we found that none of our chosen life history or habitat predictors could significantly explain the probability of a temporal response to climate warming, reinforcing our conclusion based on the more detailed data from the six African species.


2020 ◽  
Vol 12 (2) ◽  
pp. 258 ◽  
Author(s):  
Ruonan Qiu ◽  
Ge Han ◽  
Xin Ma ◽  
Hao Xu ◽  
Tianqi Shi ◽  
...  

Remotely sensed products are of great significance to estimating global gross primary production (GPP), which helps to provide insight into climate change and the carbon cycle. Nowadays, there are three types of emerging remotely sensed products that can be used to estimate GPP, namely, MODIS GPP (Moderate Resolution Imaging Spectroradiometer GPP, MYD17A2H), OCO-2 SIF, and GOSIF. In this study, we evaluated the performances of three products for estimating GPP and compared with GPP of eddy covariance(EC) from the perspectives of a single tower (23 flux towers) and vegetation types (evergreen needleleaf forests, deciduous broadleaf forests, open shrublands, grasslands, closed shrublands, mixed forests, permeland wetlands, and croplands) in North America. The results revealed that sun-induced chlorophyll fluorescence (SIF) data and MODIS GPP data were highly correlated with the GPP of flux towers (GPPEC). GOSIF and OCO-2 SIF products exhibit a higher accuracy in GPP estimation at the a single tower (GOSIF: R2 = 0.13–0.88, p < 0.001; OCO-2 SIF: R2 = 0.11–0.99, p < 0.001; MODIS GPP: R2 = 0.15–0.79, p < 0.001). MODIS GPP demonstrates a high correlation with GPPEC in terms of the vegetation type, but it underestimates the GPP by 1.157 to 3.884 gCm−2day−1 for eight vegetation types. The seasonal cycles of GOSIF and MODIS GPP are consistent with that of GPPEC for most vegetation types, in spite of an evident advanced seasonal cycle for grasslands and evergreen needleleaf forests. Moreover, the results show that the observation mode of OCO-2 has an evident impact on the accuracy of estimating GPP using OCO-2 SIF products. In general, compared with the other two datasets, the GOSIF dataset exhibits the best performance in estimating GPP, regardless of the extraction range. The long time period of MODIS GPP products can help in the monitoring of the growth trend of vegetation and the change trends of GPP.


Sign in / Sign up

Export Citation Format

Share Document