scholarly journals Mathematical model for the power generation from arbitrarily oriented photovoltaic panel

2017 ◽  
Vol 14 ◽  
pp. 01028 ◽  
Author(s):  
Qusay Hassan ◽  
Marek Jaszczur ◽  
Estera Przenzak
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 483
Author(s):  
Novie Ayub Windarko ◽  
Muhammad Nizar Habibi ◽  
Bambang Sumantri ◽  
Eka Prasetyono ◽  
Moh. Zaenal Efendi ◽  
...  

During its operation, a photovoltaic system may encounter many practical issues such as receiving uniform or non-uniform irradiance caused mainly by partial shading. Under uniform irradiance a photovoltaic panel has a single maximum power point. Conversely under non-uniform irradiance, a photovoltaic panel has several local maximum power points and a single global maximum power point. To maximize energy production, a maximum power point tracker algorithm is commonly implemented to achieve the maximum power operating point of the photovoltaic panel. However, the performance of the algorithm will depend on operating conditions such as variation in irradiance. Presently, most of existing maximum power point tracker algorithms work only in a single condition: either uniform or non-uniform irradiance. This paper proposes a new maximum power point tracker algorithm for photovoltaic power generation that is designed to work under uniform and partial shading irradiance conditions. Additionally, the proposed maximum power point tracker algorithm aims to provide: (1) a simple math algorithm to reduce computational load, (2) fast tracking by evaluating progress for every single executed duty cycle, (3) without random steps to prevent jumping duty cycle, and (4) smooth variable steps to increase accuracy. The performances of the proposed algorithm are evaluated by three conditions of uniform and partial shading irradiance where a targeted maximum power point is located: (1) far from, (2) near, and (3) laid between initial positions of particles. The simulation shows that the proposed algorithm successfully tracks the maximum power point by resulting in similar power values in those three conditions. The proposed algorithm could handle the partial shading condition by avoiding the local maxima power point and finding the global maxima power point. Comparisons of the proposed algorithm and other well-known algorithms such as differential evolution, firefly, particle swarm optimization, and grey wolf optimization are provided to show the superiority of the proposed algorithm. The results show the proposed algorithm has better performance by providing faster tracking, faster settling time, higher accuracy, minimum oscillation and jumping duty cycle, and higher energy harvesting.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 277
Author(s):  
Lev Yu. Lezhnev ◽  
Alexey P. Tatarnikov ◽  
Arсady A. Skvortsov ◽  
Igor A. Papkin ◽  
Aleksandr S. Nekrasov

The article describes the process of developing a turbogenerator for power plants of small and distributed power generation. The analysis of the component base for the turbogenerator was carried out, and thereof a comparative analysis of possible technical solutions was conducted. The work considered the installation variants of a turbogenerator in the exhaust system, an electric machine of a turbogenerator, types of turbines of a generator. A mathematical model for computation of the output effective and geometric parameters of a turbogenerator was described. The results of computational analysis were presented, and the parameters of the turbogenerator being developed were selected. Based on the results of the work done the conclusions were made  


2015 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Clement Ehimika Ohireime Onime ◽  
James Uhomoibhi ◽  
Ermanno Pietrosemoli

It is becoming increasingly important to include information about power generation from renewable energy sources in the training of electrical engineers. Solar energy is arguably the most common renewable energy source in use today. Providing practical hands-on training on solar energy power generation today requires the use of photovoltaic panel devices which are used for transforming solar energy into electrical energy. In many developing countries, practical hands-on training on solar power generation is limited due to the cost of photovoltaic panel devices and so the training consists of theoretical and tutorial classes sometimes supported by remote and virtual laboratories. This paper presents an augmented virtuality tool where real-time information from a mobile device’s sensors is used directly within a virtual or computer generated environment. The tool provides a practical context for hands-on tutorial exercises on solar energy power generation.


2020 ◽  
Author(s):  
Anqi Tan ◽  
Senlin Chen

<p>Discrete differential dynamic programming algorithm is widely used in reservoir power generation dispatching, but the problem of "dimensional disaster" still exists, and there are different degrees of limitations such as premature convergence and uncertainty of convergence. In the existing monographs and literature, there is little research on the algorithm itself. The iterative solution convergence conditions, initial parameters, and initial trajectory selection of the mathematical model for reservoir power generation scheduling optimization have important effects on the iterative process and results. The convergence conditions directly determine when the iterative process converges and its calculation results. In this paper, the solution convergence conditions are studied. Based on the calculation results of the mathematical model of reservoir power generation scheduling optimization, the method of iteratively solving the convergence conditions when different state quantities are used as control factors is systematically studied. Shuibuya Hydropower Station Scheduling results show that using this method to determine the termination step size can shorten the calculation time and obtain an optimization result close to the ideal value, avoid the randomness of the convergence process of the iterative solution, and improve the accuracy of the DDDP algorithm and the efficiency of the target value.</p>


2019 ◽  
Vol 118 ◽  
pp. 01047
Author(s):  
Xin Hou ◽  
Daoyuan Wen ◽  
Fangqin Li ◽  
Chuang Ma ◽  
Xiaotong Zhang ◽  
...  

Due to the increasingly limited conventional energy and increasing environmental problems, the photovoltaic industry is receiving more and more attention from all over the world. China’s solar photovoltaic industry has driven rapid development in electricity prices. Photovoltaic power generation is affected by light intensity and photovoltaic panel temperature. In this paper, the effects of light intensity and photovoltaic panel temperature on photovoltaic panel power generation are discussed.


2021 ◽  
Author(s):  
Yi Wang ◽  
Tiejun Zhou ◽  
Weiji Zhou

Abstract A solar radiation distribution method is proposed based on the maximization of economic benefits for photovoltaic power generation and agricultural production in a photovoltaic greenhouse to solve the problem of low overall economic benefits because of an unreasonable solar radiation distribution between photovoltaic power generation and agricultural production in the photovoltaic greenhouse. First, a mathematical model of the solar radiation yield of photovoltaic greenhouse crops is proposed based on a rectangular hyperbolic modified light response model of crops to represent the relationship between solar radiation energy and crop production. Second, a mathematical model of the average annual revenue of a photovoltaic greenhouse is established to determine the maximum annual economic benefit of the photovoltaic greenhouse, and the model is constrained by the requirements of the light intensity of photovoltaic power generation and environmental conditions for the growth of greenhouse crops. Finally, the correctness of the model is verified by actual operation data of a photovoltaic greenhouse in Xinjiang, and the optimal solar radiation distribution proportion is calculated. This study provides theoretical support for the design of photovoltaic greenhouses.


Author(s):  
Hidenori Murakami ◽  
Oscar Rios ◽  
Ardavan Amini

Global attempts to increase generation of clean and reproducible natural energy have greatly contributed to the progress of solar, wind, biomass, and geothermal energy generation. To meet the goal set by the Renewable Portfolio Standards (RPS) in the United States, it is advisable for several of the coastal states to tap into the least explored resource: ocean-wave energy. There are many advantages to ocean-wave energy generation. First, the energy per unit area is 20 to 30 times larger compared with solar and five to ten times larger when compared to wind energy. Second, waves are more easily predicted than wind. Currently, there are several challenges with capturing ocean energy: With respect to the environment, noise pollution and effects on marine life need to be taken into consideration; with respect to design, ocean-wave power generators need to withstand large waves due to hurricanes and be designed to lessen visual pollution. There are various methods and devices used to capture ocean wave energy. Point absorbers, such as PowerBuoy, can harness vertical or heaving motion into electricity while attenuators like Pelamis use the induced movement of its joints from the incoming waves. Unfortunately, many have few parameters that can be varied to optimize power generation and or suffer from the various challenges mentioned above. The gyroscopic ocean wave energy converter harnesses the rocking or pitching motion induced by the ocean waves and converts it into rotary motion that is then fed to a generator. Furthermore, it is a fully enclosed floating device that has several parameters that can be varied to optimize power output. Previous work has demonstrated the viability of such a device, but the theoretical modeling of these converters is still in its infancy compared to that of other ocean wave energy converters. The objective of the research presented is to fully understand the mechanisms of power generation in the gyroscopic ocean wave energy converter. Using the moving frame method, a mathematical model of the device is developed. The nonlinear equations of motion are derived through the use of this novel method and then solved numerically. The results are then used to optimize the system and identify key parameters and their effect on the output power generated. Additionally, the resulting equations serve as a tool for identifying an appropriate control strategy for the system. Finally, a scale model of a gyroscopic ocean wave energy converter is developed to validate the equations of motion that have been derived.


Sign in / Sign up

Export Citation Format

Share Document