scholarly journals Study of Supervisory Control Implementation in A Small Scale Variable Speed Wind Turbine

2018 ◽  
Vol 43 ◽  
pp. 01023
Author(s):  
Katherin Indriawati ◽  
Ali Musyafa ◽  
Bambang L. Widjiantoro ◽  
Anna Milatul Ummah

In relation to improve wind energy production, efforts to increase the extraction of wind energy should be done when there is a decrease in wind power. The decline occurs when there is a change in wind speed. At low wind speed operating range, such as in Indonesia, the controller optimizes power extraction through wind turbine rotor regulation following optimal rotor speed. This study proposed the use of the PI control system as an intelligent control system to solve nonlinearity problem and the setpoint adjustment mechanism to get at the problem of the uncontrolled stochastic driving force input. The PI control is called as a regulatory control while setpoint adjustment is known as one mechanism in supervisory level. Thus, that control system is called as the supervisory control. This control had a task to maximize output power of a wind turbine. The technique was applied to a small scale horizontal axis wind turbine operating in wind speed range of 3-11 m/s. The applied optimization algorithm generated an optimum set-point simultaneously when there was a change of wind speed.

2021 ◽  
Vol 926 (1) ◽  
pp. 012093
Author(s):  
Y Kassem ◽  
H Çamur ◽  
M A H A Abdalla ◽  
B D Erdem ◽  
A M R Al-ani

Abstract The grid-connected system can be an attractive solution to reduce electricity consumption, dependence on utility power, and increase electricity generation from renewable energy resources like wind energy for residential electricity users. Based on 33-year wind data (1983-2020), this study investigates the potential of wind energy at different locations ((Akkar, Baalbek, Beirut, Zahlé, Baabda, Nabatieh, Tripoli, and Sidon) in Lebanon using the Weibull distribution function. Monthly NASA wind speed data during the period (1983-2020) were used to estimate the wind energy potential. The result showed that the averaged wind speeds at the selected regions are varied from 3.695m/s to 4.457m/s at the height of 10m. Furthermore, the annual wind power density was estimated at various heights (10m, 30m, and 50m). The results demonstrated that small-scale wind turbines are recommended to be used for generating electricity from wind in the selected regions. Finally, the performance of WRE.060 / 6 kW (vertical axis wind turbine) and Proven WT 6000 (horizontal axis wind turbine) was done based on the monthly NASA wind speed database.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wang Wenxin ◽  
Chen Kexin ◽  
Bai Yang ◽  
Xu Yun ◽  
Wang Jianwen

AbstractGiven the increasing trend of using wind energy in cities, the utilization of distributed wind energy in cities has been widely concerned by researchers. The related research on the micro-site selection of wind turbines, a sub-project of the Task27 project of the International energy agency, was continued in this paper. The wind speed data of an observation station near Hohhot, Inner Mongolia, with a range of 10–19 m were collected. The evaluation included wind direction, Weibull parameter characteristics, and turbulence intensity. The potential energy output in 10 different heights was estimated using commercial horizontal and vertical axis wind turbines of the same power. Results showed that the following: the three-parameter Weibull distribution model can well describe the statistical properties of the wind speed in this site. The wind speed distribution model constructed from extrapolation parameters reflects the wind speed statistical properties out of detection positions to a certain extent. The wind energy density of the vertical axis wind turbine is slightly lower than that of the horizontal axis wind turbine. Furthermore, more power can be generated from March to May.


2019 ◽  
Vol 8 (4) ◽  
pp. 9557-9562

Wind energy is one of the most viable options for clean and sustainable energy production. In Malaysia where wind source has been considered scarce, the capacity of installed wind energy production is very low. However, studies have shown that it is worthwhile to produce wind energy at several potential sites in this country. For this purpose, it is crucial that the designed turbine blade gives the highest possible blade power efficiency while structure wise, the turbine blade need to be effective in terms of avoiding possible failures. The maximum power efficiency means the blade does not only provide profile that gives maximum sliding ratio but also it must operate at the corresponding angle of attack, 𝜶𝒎𝒂𝒙 that gives this ratio. At the same time, the blade must be small enough to have low weight to allow it to self-start in the low wind region. In this paper, the study is focused on the aerodynamic aspect of the design of wind turbine blade that will give the maximum power efficiency. Four factors that determine aerodynamic performance of the turbine blades are discussed: the wind condition, the airfoil profile, the blade geometry and the losses. In most of the factor, adjustments are made such that the blade operates at around the 𝜶𝒎𝒂𝒙 so that the sliding ratio and thus power coefficient are maximum.


2021 ◽  
Vol 3 (1) ◽  
pp. 29-49
Author(s):  
Asif Khan ◽  
Saim Memon ◽  
Zafar Said

Integration of small-scale wind energy system to residential buildings for a target to achieve net-zero CO2 emissions is a revolutionary step to reduce the dependency on the national grid. In this paper, a predictive 20 kVA permanent magnet synchronous generator (PMSG) based small scale wind turbine is investigated at dynamic wind speed with a sensing control system to manage and monitor the power flow for a supply to a typical residential building. A control system is applied that regulates the power from the wind turbine. Results indicate that the proposed control system maximizes the power efficiency within the system. The maximum power generation capacity of the wind turbine is 20 kWh with 415 VAC and 50 Hz frequency. A storage system of 19.2 kWh that supplies the energy to the load side. The applied control unit improves the energy management and protects the power equipment during the faults. The research is conducted using MATLAB/SIMULINK and mathematical formulations.


2018 ◽  
Vol 6 (2) ◽  
pp. 75-81
Author(s):  
Muhammad Al Badri

This study is aimed to optimize the conversion of kinetic wind energy into electrical energy. Wind energy is a sustainable energy that is preferred to generate electricity for its low generation cost and low CO2 emissions. The considerations of physical principles of a horizontal axis wind turbine were involved in the study. Controlling of the blade angle deviation and the turbine rotation direction was also considered. For this purpose, a complete wind turbine system was setup by using the computerized simulation software (PSCAD). The system was running at five different cases with different wind speeds and different angles of the blade. The system was successfully generating a maximum output power from the wind turbine based on the changing of the deflection angle of the blade. Also the system would shut down if there were no matching between the wind speed and its direction with the angle of the blade.


2014 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Ravi Anant Kishore ◽  
Anthony Marin ◽  
Shashank Priya

AbstractThere is growing need for the green, reliable, and cost-effective power solution for the expanding wireless microelectronic devices. In many scenarios, these needs can be met through a small-scale wind energy portable turbine (SWEPT) that operates near ground level where wind speed is of the order of few meters per second. SWEPT is a three-bladed, 40 cm rotor diameter, direct-drive, horizontal-axis wind turbine that has very low cut-in wind speed of 1.7 m/s. It operates in a wide range of wind speeds between 1.7 m/s and 10 m/s and produces rated power output of 1 W at wind speed of 4.0 m/s. The wind turbine is capable of producing electrical power up to 9.8 W at wind speed of 10 m/s. The maximum efficiency of SWEPT was found to be around 21% which makes it one of the most efficient wind turbines reported at the small scale and low wind speed. These advancements open many new opportunities for embedding and utilizing wireless and portable devices.


Author(s):  
Ahmed S A Badawi ◽  
Nurul Fadzlin Hasbullah ◽  
Siti Yusoff ◽  
Aisha Hashim ◽  
Mohammed Elamassie

In this paper power energy had been estimated based on actual wind speed records in a coastal city in Palestine Ashdod. The main aims of this study to determine the feasibility of wind turbine and to estimate payback period. Therefore, to encourage investment in renewable energy in Palestine. The daily average wind speed data had been analyzed and fitted to the Weibull probability distribution function. The parameters of Weibull had been calculated by author using Graphical method the applied example wind turbine is 5kw wind turbine generator this is suitable turbine for small scale based on wind speed records on the coastal plain of Palestine. This study calculated the energy that can produce from wind turbine to estimate the revenue of any possible project in wind energy conversion system based on unit area. Energy has been calculated wind energy using two different method based on Weibull data and measured data. The total amount of energy for 2010 is 10749.8 kw.hr/m2 based on measured wind speed. Payback period for the project in wind energy turbines is around 3 years which make the generation electricity possible for small scale but not commercial. This study will lead to assess the wind energy production in Palestine to encourage investment in renewable energy sectors.


Author(s):  
Atif Iqbal ◽  
Deng Ying ◽  
Faheem Akhter ◽  
Manoj Kumar Panjwani ◽  
Danish Khan

Renewable energy sources could be the main contributor to fulfilling the world’s energy requirement. Wind energy is grabbing the world’s attention due to its abundant nature and reliability. Wind energy is a prominent renewable energy source due to its availability and higher reliability. Despite the aforementioned benefits, there are some challenges such as wind measurement and prediction due to the turbulent nature of the wind. Lidar (light detection and ranging) technology is used in wind turbines to preview the wind and act it accordingly. Wind speed along with the direction is measured by the Lidar before it reaches the wind turbine plane and the control system of the wind turbine utilizes this data for optimal results. It enhances the control system along with it optimizes the output power. This paper presents the Lidar simulation model, which previews the wind earlier than the conventional feedback method. The Lidar simulation model is prepared and implemented on the horizontal axis wind turbine. The simulation is performed in GH Bladed at a 2.0 MW wind turbine. The output results are analyzed with the former method. The power extracted, pitch angle, rotor torque obtained from the proposed methodology proves its efficacy.


2020 ◽  
Vol 3 (2) ◽  
pp. 64
Author(s):  
Muhammad Alfi Alfaridzi

Abstract: The use of wind energy in Indonesia is currently still low due to the average wind speed in the Indonesian territory ranging from 3 m / s to 11 m / s, making it difficult to produce electrical energy on a large scale. However, the potential for wind in Indonesia is available almost all year round, making it possible to develop small-scale power generation systems. Innovations in modifying windmills need to be improved so that in low wind speed conditions it can produce electrical energy. Therefore, a HAWT (Horizontal Axis Wind Turbine) blade design was made using a NACA airfoil which has a high Cl / Cd value and produces 500 W of power at wind speeds of 1 - 11 m / s. The research was conducted in 3 stages. The first calculation phase is to determine the radius, chord and twist of the blade. The two stages of the initial blade design were simulated using QBlade software to determine the NACA airfoil being used and to determine the performance coefficient and the resulting power. The three stages of blade design use Solidworks software which produces a 3D blade design. The design results produce a HAWT blade with a taperless NACA 4412 airfoil with blade radius of 1 m, chord width 0.12 m, and twist angle of 5.08 ° - 12.08 °. At a wind speed of 10 m / s, the blade has a maximum Cp of 52%, a maximum power of 1010 W at an angular speed of 450 rpm, a minimum power of 85 W at an angular speed of 95 rpm. The average power produced is 547.5 W. Field test results of Taperless NACA 4412 blades. The results of the field testing are 585.58 W of maximum charge and an average charge of 30.24 W, with the resulting power of 725.55 Wh. Keywords: Blade, Taperless, NACA 4412,Wind Turbine


Sign in / Sign up

Export Citation Format

Share Document