scholarly journals Bottom ash obtained from biomass burning in fluidised-bed boilers as a mortar component

2018 ◽  
Vol 46 ◽  
pp. 00009
Author(s):  
Waldemar Kępys

The production of energy from biomass causes generation of solid waste, in the forms of fly ash and bottom ash. Owing to both economic considerations and environmental protection, it is required to recover those types of waste. The physical and economic properties of bottom ash indicate that waste ash can constitute a substitute of sand in the production of mortars. Consequently, tests were performed on the influence of bottom ash, used as sand substitute, on the mechanical properties of mortar. The test results indicated a possibility of using bottom ash as a mortar component

2021 ◽  
Vol 878 ◽  
pp. 121-126
Author(s):  
Malgorzata Ulewicz ◽  
Anna Zawada

In this article, the influence of the addition of the bottom ash to clay on the selected physical and mechanical properties of ceramic composite are discussed. The biomass (80% wood with the addition of 20% coconut shells) was combustion in the fluidised-bed boiler. The tests were carried out on the samples, in which the contents of bottom ash in relation to clay ranged from 5 to 15%. The absorbability, open porosity, apparent density, compression strength and freeze resistance have been determined. The obtained test results indicate that the increase of this bottom ash in clay-ash composite causes the increase of open porosity, absorbability and compression strength, but a reduction in resistance against frost attract.


2020 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
B. Simões ◽  
P. R. da Silva ◽  
R. V. Silva ◽  
Y. Avila ◽  
J. A. Forero

This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20% MIBA, 20% FA + 10% MIBA, 20% FA + 40% MIBA and 40% FA + 20% MIBA, apart from the reference concrete) were considered. Compressive and tensile strengths, Young’s modulus, ultra-sonic pulse velocity, shrinkage, water absorption by immersion, chloride diffusion coefficient and electrical resistivity were evaluated for all concrete mixes. The results showed a considerable decline in both mechanical and durability-related performances of self-compacting concrete with 60% of substitution by MIBA mainly due to the aluminium corrosion chemical reaction. However, workability properties were not significantly affected, exhibiting values similar to those of the control mix.


2016 ◽  
Vol 866 ◽  
pp. 99-105 ◽  
Author(s):  
Smita Singh ◽  
M.U. Aswath ◽  
R.V. Ranganath

The present investigation is on the effect of red mud on the mechanical properties and durability of the geopolymer paste in sulphuric and acetic acid solution. Red mud and fly ash were used to form the geopolymer paste along with the alkalies. The variation of red mud in the paste composition was from 0% to 90%. Cylindrical shaped specimens of 1 inch diameter and 1 inch height were prepared. The specimens were immersed in 5% sulphuric acid and 5% acetic acid for 1, 7, 14, 28, 56 and 84 days and tested for weight loss, visual deformation, strength loss and colour of the solvent, based on the procedure specified by ASTM C 267 – 01. SEM/EDX Tests were performed on the geopolymer specimens. Test results show that initially, the strength of the geopolymer increased upon the addition of red mud. The strength was maximum when the percentage of red mud was 30%. The maximum strength obtained was 38 MPa for the paste containing 30% red mud using 10M alkali solution as against 31.69 MPa, when only fly ash was used. Geopolymer paste containing 30% and 50% red mud showed better resistance to acid attack. The strength loss was minimum for the samples containing 30% red mud in both inorganic and organic acid i.e. sulphuric and acetic acid.


2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng-quan Zhou ◽  
Da-wei Zhou ◽  
Yong-fei Zhang ◽  
Wei-jian Wang ◽  
Dongwei Li

To probe into the dynamic mechanical properties of expansive soil stabilized by fly ash and lime under impact load, the split-Hopkinson pressure bar (SHPB) test was carried out in this study. An analysis was made on the dynamic mechanical property and final fracture morphology of stabilized soil, and the failure mechanism was also explored from the perspective of energy dissipation. According to the test results, under the impact pressure of 0.2 MPa, plain soil and pure fly ash-stabilized soil exhibit strong plasticity. After the addition of lime, the stabilized soil shows obvious brittle failure. The dynamic compressive strength and absorbed energy of stabilized soil first increase and then decrease with the change of mix proportions. Both the dynamic compressive strength and the absorbed energy reach the peak value at the content of 20% fly ash and 5% lime (20% F + 5% L). In the process of the test, most of the incident energy is reflected back to the incident bar. The absorbed energy of stabilized soil increases linearly with the rise of dynamic compressive strength, while the absorbed energy is negatively correlated with the fractal dimension. The fractal dimension of pore morphology of the plain soil is lower than that of the fly ash-lime combined stabilized soil when it comes to the two different magnification ratios. The test results indicate that the modifier content of 20% F + 5% L can significantly improve the dynamic mechanical properties of the expansive soil.


2020 ◽  
Vol 10 (17) ◽  
pp. 6075
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Laura Borgese ◽  
Laura Eleonora Depero ◽  
...  

This study presents an innovative stabilization method of fly ash derived from co-combustion of municipal solid waste and sewage sludge. Bottom ash, obtained from the same process, is used as a stabilizing agent. The stabilization method involved the use of two other components—flue gas desulfurization residues and coal fly ash. Leaching tests were performed on stabilized samples, aged in a laboratory at different times. The results reveal the reduction of the concentrations of heavy metals, particularly Zn and Pb about two orders of magnitude lower with respect to fly ash. The immobilization of heavy metals on the solid material mainly depends on three factors—the amount of used ash, the concentrations of Zn and Pb in as-received fly ash and the pH of the solution of the final materials. The inert powder, obtained after the stabilization, is a new eco-material, that is promising to be used as filler in new sustainable composite materials.


2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nuria S. Mohammed ◽  
Ahmad Baharuddin Abdul Rahman ◽  
Nur Hafizah A. Khalid

This paper presents the mechanical properties and performance of polyester grout as infill material for grouted connection in precast concrete. The mix proportions of polyester grout was properly designed and manufactured. The polymer binder with polymer additive was added together with filing materials of sand and fly ash. The binder to filler ratio was 0.43. Properties such as flowing ability and compression strength were studied by varying the level of fly ash in the mixtures. Also, to assess the efficacy of polyester grouted connections, three grouted connections were tested in direct tension. The test results show that, polyester resin grout with binder to filler ratio 0.43% and 16% fly ash perform satisfactorily. The polyester grout is suitable for use in the steel pipe splice connections.


2020 ◽  
Vol 245 ◽  
pp. 118779 ◽  
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Jessica Ponti ◽  
Andrea Valsesia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document