Selected Properties of Clay-Ash Composite Containing Bottom Ash from Combustion of Wood - Coconut Shells Biomass

2021 ◽  
Vol 878 ◽  
pp. 121-126
Author(s):  
Malgorzata Ulewicz ◽  
Anna Zawada

In this article, the influence of the addition of the bottom ash to clay on the selected physical and mechanical properties of ceramic composite are discussed. The biomass (80% wood with the addition of 20% coconut shells) was combustion in the fluidised-bed boiler. The tests were carried out on the samples, in which the contents of bottom ash in relation to clay ranged from 5 to 15%. The absorbability, open porosity, apparent density, compression strength and freeze resistance have been determined. The obtained test results indicate that the increase of this bottom ash in clay-ash composite causes the increase of open porosity, absorbability and compression strength, but a reduction in resistance against frost attract.

2018 ◽  
Vol 46 ◽  
pp. 00009
Author(s):  
Waldemar Kępys

The production of energy from biomass causes generation of solid waste, in the forms of fly ash and bottom ash. Owing to both economic considerations and environmental protection, it is required to recover those types of waste. The physical and economic properties of bottom ash indicate that waste ash can constitute a substitute of sand in the production of mortars. Consequently, tests were performed on the influence of bottom ash, used as sand substitute, on the mechanical properties of mortar. The test results indicated a possibility of using bottom ash as a mortar component


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


2016 ◽  
Vol 677 ◽  
pp. 186-190 ◽  
Author(s):  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Kateřina Šestáková ◽  
Pavel Reiterman ◽  
Martin Keppert ◽  
...  

This article is focused on cement based composites. Two cements differing in mineralogical composition are utilised as main binder in composites mixtures. Results of measured physical parameters of studied materials are presented. For the sake of comparison, a reference material with Portland cement was also prepared. Basic physical properties (measured by water vacuum saturation method and by helium pycnometry), characterizations of pore system (determined by mercury porosimetry) and mechanical properties are the matter of this study. Composites show various open porosity; the results of open porosity of materials containing special cements show higher values, in comparison with composite based on Portland cement. This fact of course influences other material characteristics - mainly mechanical properties.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2018 ◽  
Vol 3 (1) ◽  
pp. 80-85
Author(s):  
Ernawati Kawa ◽  
Minsyahril Bukit ◽  
Albert Zicko Johannes

Abstrak Telah dilakukan penelitian tentang penentuan sifat mekanis dan fisis batu bata dengan penambahan tempurung kelapa asal alor. Penenlitian ini bertujuan mengetahui kualitas batu bata yang memenuhi standar kelayakan sebagai bahan konstruksi dengan penambahan arang tempurung kelapa aal alor dengan presentasi 0%, 5%, 10%, 15% terhadap tanah liat (lempung). Batu bata dicetak dengan prosedur pemadatan, pengringn dan pembakaran. Setelah prosedur pencetakkan selesai kemudian di lanjutkan dengan pengujian sefat mekanis dan sifat fisis, yaitu uji kuat tekan (compression strength), densitas (density), porositas (porosity) hasil  kuat tekan batu bata didapatkan berdasarkan pengujian: a) uji kuat tekan, batu bata tanpa penambahan (0%) : 4,94 meemenuhi standar kuat tekan kelas 50 (SNI 15-2094-2000), b) uji porositas, batu bata 0% dan 5% : 3,82% dan 17,93% memenuhi standar porositas dengan batas maksimum 20% (SNI 15-2094-2000) dan uji densitas, batu bata tidak ada yang memenuhi standar (SII 0021-1978) Kata kunci: sifat mekanis, sifat fisis, tempurung kelapa, densitas, porositas, kuat tekan Abstract A research had been conducted to determine physical and mechanical properties of the bricks with the addition coconut shell charcoal from alor. This research aims at the quality of the bricks to meet the standars of eligibility as a contruction material. The addition of coconut shell charcoal is variate with the presentage 0%, 5%, 10%, 15% to the clay mass. The brick being printed with procedure compaction, drying, and baking. After the printing procedure is done then next is testing the mechanical and physical properties, that is compression strength test, density test, and porosity test. The brick quality result is obtained based on the test: a) compression strength test, the brick without addition (0%) : 4,94  (SNI 15-2094-2000) is comply with the standard compression strength the class 50 , b) porosity test, the brick 0% and 5% (3,82% and 17,93%) meet the standard with the maximum limit 20% ( SNI 15-2094-2000)  , and c) density test, every bricks does not meet the standard (SII 0021- 1978). Keywords: mechanical properties, physical properties, coconut shell, density, porosity, compression strength


2019 ◽  
Vol 106 ◽  
pp. 01023
Author(s):  
Justyna Morman-Wątor

The article presents the results of tests for mining waste mixtures - cement. The addition of cement was aimed at limiting the leaching of fine particles and improving physical and mechanical parameters. The studies used cement CEM I 42.5 R and CEM III/ A 42.5N - LH / HSR / NA and plasticizing sealant. The paper presents the results of freeze resistance, swelling tests, pH of water leachate and oedometer soil testing.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Amanda Mahammad Mushashe ◽  
Carla Castiglia Gonzaga ◽  
Paulo Henrique Tomazinho ◽  
Leonardo Fernandes da Cunha ◽  
Denise Piotto Leonardi ◽  
...  

Introduction. For the maintenance of the aseptic chain created during the treatment the coronal sealing becomes paramount. Aim. Evaluating the antibacterial effect and the physical-mechanical properties of a temporary restorative material containing different antibacterial agents. Material and Methods. Two antibacterial agents (triclosan and chloramine T) were manually added to a temporary restorative material used as base (Coltosol). The antibacterial action of the material was analyzed using the agar diffusion method, in pure cultures of Escherichia coli (ATCC BAA-2336) and Staphylococcus aureus (ATCC 11632) and mixed culture of saliva collection. The microleakage rate was analyzed using bovine teeth, previously restored with the materials, and submitted to thermocycling, in a solution of 0.5% methylene blue, for a period of 24 hours. The physical and mechanical properties of the materials analyzed were setting time, water sorption, solubility, and compression strength. Results. No marginal leakage was observed for all groups. There was no statistical significant difference in antimicrobial activity, setting time, water sorption, solubility, and compression strength among the materials. Conclusion. The addition of antibacterial agents on a temporary restorative material did not optimize the antibacterial ability of the material and also did not change its physical-mechanical properties.


2010 ◽  
Vol 168-170 ◽  
pp. 1426-1431
Author(s):  
Zhi Qing Li ◽  
Zhen Dong Cui ◽  
Yan Ping Wang ◽  
Li Chao Wang ◽  
Duo Zhong

According to the typical loess in Shuozhou in Shanxi province, tests involved in compaction characteristics, shearing strength characteristics and disintegration are carried out by using loess and three kinds of improved loess, namely lime and fly-ash, lime and cement, cement and fly-ash. The best improved soil method is selected. The test results indicate that the compact hybrid structure is formed by fly ash and loess. The activity of fly ash is activated as a result of the lime mixing. A series of hydration reaction prompt the intensity of modified loess. And the physical and mechanical properties of improved loess are improved noticeably.


Sign in / Sign up

Export Citation Format

Share Document