scholarly journals Remote sensing of Carpathian flysch landslides with the use of terrestrial laser scanner

2018 ◽  
Vol 66 ◽  
pp. 01019
Author(s):  
Janusz P. Kogut ◽  
Ievgen Tymoshenko

Terrestrial laser scanning helps us to detect unstable subsurface behaviour, assessing the slope stability and potential landslide failure modes. If the slopes are regularly observed, the risk of slope movement and subsequent consequences may be considerably reduced. This allows for optimum land use conditions that are economically justified. Landslides in the Carpathian flysch have a peculiar susceptibility to activation due to the region’s geological structure. This work addresses the problem of monitoring and analysing the effects of landslides associated with the operation of routes (roads and railway lines) running through the slopes of the Carpathian flysch. The terrestrial laser scanner enables site remote sensing in a simple and automated manner. Regular measurements with multiple scanner positions may be used for long term slope monitoring. A detailed geological structural model allows for risk assessment with regards to failure modes, and it allows for a slope stability assessment. The model, along with the substrate parameters, introduced into the Finite Element Analysis package enables an analysis of the effects of landslide susceptibility and the displacements of the terrain surface in time, as well as due to different loading cases.

2012 ◽  
pp. 75-78
Author(s):  
Péter Riczu ◽  
János Tamás ◽  
Gábor Nagy ◽  
Attila Nagy ◽  
Tünde Fórián ◽  
...  

As a result of the technological development, remote sensing instruments and methods have become widespread in all segments of life (from precision agriculture through architecture to medicine). Among the innovative development of remote sensing instruments the 3D laser scanner is overriding importance. The horticulture applicability of terrestrial laser scanning technique is innovation in the precision agriculture, because it could be determine the structure of trees and branches, the canopy extension, which can help to recognize some biophysical parameters. The examination was carried out with Leica ScanStation C10 terrestrial laser scanner in the Study and Regional Research Farm of the University of Debrecen near Pallag. In this article I present the measuring principle, the parameters and horticulture applicability of the terrestrial laser scanner.


Author(s):  
J. Tamás ◽  
P. Riczu ◽  
G. Nagy ◽  
A. Nagy ◽  
T. Jancsó ◽  
...  

Due to the technological development, remote sensing instruments and methods have become widespread in all segments of life (from precision agriculture through architecture to medicine). Among the innovative development of remote sensing instruments the 3D laser scanner is of outstanding importance. Horticultural applicability of terrestrial laser scanning technique is a new innovation in the precision agriculture. The structure of trees and branches, the canopy extension, the fruit yield, which can help to recognize some biophysical parameters, can be determined. The examination was carried out with Leica ScanStation C10 terrestrial laser scanner in the Study and Regional Research Farm of the University of Debrecen near Pallag. In this article the measuring principle, the parameters and horticulture applicability of the terrestrial laser scanner are presented.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


Author(s):  
Žymantas Gražulis ◽  
Boleslovas Krikštaponis ◽  
Algirdas Neseckas ◽  
Darius Popovas ◽  
Raimundas Putrimas ◽  
...  

The horizontal deformation analysis of high-rise buildings, quite often is complicated because buildings like chimneys, towers and etc, have complex and asymmetric shapes, consequently there is not always the possibility to apply the method of single points motion analysis. Furthermore, the horizontal deformation analysis is complicated using standard measurement methods like measurements with electronic total stations or optical theodolites. In such case the terrestrial laser scanner could be superior to traditional measurements. However, the terrestrial laser scanner still not widely used to survey building horizontal deformations using high precision measurements. The main aim of this work is to determine the suitability to measure deflections of buildings from the vertical using terrestrial laser scanners and to investigate point cloud data processing. Measurements of horizontal deformation were carried out using the over ground laser scanner and electronic total station. Horizontal deformations of chimneys of thermal power plants were investigated using corresponding methods. Deformation indicators and evaluated measurement accuracies between different methods were compared. Data analysis of terrestrial laser scanning is more complex, time consuming and requires sophisticated hardware resources in comparison with the traditional methods, however results are much more detailed and informative.


2019 ◽  
Vol 284 ◽  
pp. 08007
Author(s):  
Joanna A. Pawłowicz

3D terrestrial laser scanning (TLS) is a modern measurement technique which enables to obtain a large amount of data in short time. The gathered data is very detailed, thus the scope of its use is vast. Therefore scanners other measurement devices which results in considerable acceleration of stock-taking work. This approach enables to prepare a documentation of a building or to make an assessment of its technical condition using only a 3D cloud of points. Additionally, flexibility of data and advanced computer programmes make it possible to use such data in many sectors, not only in the building trade. The paper shows the issue of using a 3D terrestrial laser scanner ant the TLS (Terrestrial Laser Scanning) technique for identification and measurement of damaged elements on the example of a historical sacral building.


2011 ◽  
Vol 94-96 ◽  
pp. 826-829
Author(s):  
Jia Ping Zhang ◽  
He Wu ◽  
Yu Qin Feng ◽  
Guang Yang ◽  
Guo Feng Wang ◽  
...  

The foundation of slope stability analysis is the data acquisition of the deformation. How to obtain the data detection point directly and efficiently is the access to achieve real-time predict method to slope stability. By introducing the Trimble GX 3D laser scanning data acquisition method, road slope detection method is put forward. According to the scanner system and working principle of the implementation steps, the slope detection and data processing procedures are developed and present references to the slope detection. With specific engineering application analysis, the feasibility of such acquisition is verified.


2011 ◽  
Vol 5 (1) ◽  
pp. 135-138 ◽  
Author(s):  
S. Kaasalainen ◽  
H. Kaartinen ◽  
A. Kukko ◽  
K. Anttila ◽  
A. Krooks

Abstract. We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application). We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS) campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.


Author(s):  
J. Hanuš ◽  
T. Fabiánek ◽  
L. Fajmon

Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). <br><br> CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all sensors. <br><br> The new hyperspectral imaging system required adaptations in the data pre-processing chain. The established pre-processing chain (radiometric, atmospheric and geometric corrections), which was tailored mainly to the AISA Eagle instrument operated at CzechGlobe since 2004, has been now modified to fit the new system and users needs. Continuous development of the processing chain is now focused mainly on establishing pre-processing of thermal data including emissivity estimation and also on joint processing of hyperspectral and laser scanning data.


2013 ◽  
Vol 325-326 ◽  
pp. 1787-1791 ◽  
Author(s):  
Hang Chen ◽  
Zhang Ying ◽  
Zhen Feng Shao ◽  
Zhi Qiang Du

This paper analyzes the characteristics of terrestrial laser scanning technology and it's advantages of surveying and mapping application in mining area. Through the analysis of the specific topographical features of mining area, we design a new method in measurement based on the terrestrial laser scanning technology, and probe into the methods of 3D reconstruction and calculation of extraction. Experiments show that the proposed method can improve the efficiency of surveying and mapping in mining area , the 3D model can be used to monitor the extraction of mining area.


Author(s):  
Yubin Liang ◽  
Yan Qiu ◽  
Tiejun Cui

Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.


Sign in / Sign up

Export Citation Format

Share Document