scholarly journals The Use of Paint Waste as A Raw Material of Paving Block

2018 ◽  
Vol 73 ◽  
pp. 07001 ◽  
Author(s):  
Permana-Citra Ari Dina ◽  
Purwanto Purwanto ◽  
Soenoko Henna Rya

The beauty packaging industry uses paints for colouring to attract the consumers. The generation of hazardous paint waste need to be well managed to minimize negative impact on the environment. This research is intended to investigate the utilization of paint waste as a raw material of paving block. The variations of waste addition are used to study the compressive strength of paving based on the mixture of sand and cement. The addition of paint waste by 2.5 % w/w diminishes the compressive strength from 25.6MPa to 9.9 MPa. The compressive strength for the addition of 5%, 7.5%, 10%, and 15% are 7.8, 3.1, 3.2 and 2.2 respectively. The reduction of compressive strength due to the addition of paint waste indicate that the direct utilisation for production of paving block is not viable. Water absorption test value not meet the specifications of paving block SNI 03-0691-1996 which range from 1.67%-11.38%. The pre treatment of waste such as drying and grinding to eliminate the solvent is indispensible.

Jurnal PenSil ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 166-176
Author(s):  
Melinda Putri Haryani ◽  
Kusno Adi Sambowo ◽  
Anisah

Abstrak Penelitian ini bertujuan untuk mengetahui pengaruh dari pemanfaatan limbah plastik PET, limbah plastik PP dan tanah diatomae sebagai bahan pengganti pasir sehingga dapat diketahui mutu yang mampu dicapai dan kesesuaiannya dengan SNI 03-0691-1996 mengenai paving block secara fisis maupun mekanis. Penelitian ini menggunakan metode eksperimen dengan benda uji paving block menggunakan limbah plastik PET, limbah plastik PP dan tanah diatomae sebagai bahan pengganti pasir dalam populasinya terdapat 5 presentase yaitu 0% (control), 5%, 10%, 15%, dan 20% dengan jumlah benda uji setiap variasi adalah 14 buah. Benda uji pada penelitian ini berukuran 210 mm x 105 mm x 80 mm berbentuk balok yang dicetak menggunakan mesin press vibrator. Setelah selesai pencetakan, benda uji dilakukan perawatan (curing) di dalam bak air selama ±28 hari. Kemudian dilakukan pengujian untuk mengetahui mutu benda uji sesuai dengan SNI 03-0691-1996 mengenai paving block, berupa uji tampak dan ukuran, uji kuat tekan, uji daya serap air, dan uji ketahanan terhadap Natrium Sulfat. Berdasarkan penelitian yang telah dilakukan, diperoleh hasil kuat tekan pada substitusi agregat halus buatan dengan variasi 0% (control), 5%, 10%, 15%, dan 20% berturut-turut 17,708 Mpa (Mutu B), 18,479 Mpa (Mutu B), 18,722 Mpa (Mutu B), 17,936 Mpa (Mutu B), dan 14,749 Mpa (Mutu C). Pada uji daya serap air hanya paving block dengan variasi 20% yang masuk ke dalam mutu C, kemudian pada pengujian ketahanan aus seluruh benda uji masuk ke dalam mutu A. Sementara untuk uji ketahanan terhadap Natrium Sulfat, hanya variasi 0% dan 5% yang tidak lolos uji. Dari hasil pengujian menunjukan bahwa penggunaan limbah plastik PET, limbah plastik PP, dan tanah diatomae sebagai agregat halus buatan yang disubstitusi ke agregat halus alami pada variasi 10% mampu mencapai mutu B yang digunakan sebagai peralatan parkir. Kata kunci: Limbah Plastik PET, Limbah Plastik PP, Tanah Diatomae, Agregat Halus, Paving Block, SNI 03-0691-1996   Abstract This study aims to determine the effect of the utilization of PET plastic waste, PP plastic waste and diatomaceous earth as a substitute for sand so that the quality that can be achieved and its conformity with SNI 03-0691-1996 regarding paving blocks physically and mechanically can be determined. This study uses an experimental method with paving block specimens using plastic as a substitute for sand in the population there are 5 percentages, namely 0% (control), 5%, 10%, 15% and 20% with the number of specimens for each variation is 14 pieces. The test object in this study measuring 210 mm x 105 mm x 80 mm in the form of a block printed using a vibrator press machine. After completion of printing, the specimens were treated (cured) in a water bath for ±28 days. Then a test was carried out to determine the quality of the test object in accordance with SNI 03-0691-1996 regarding paving blocks, in the form of appearance and size test, compressive strength test, water absorption test, and resistance test to Sodium Sulfate. Based on the research that has been done, the results of the compressive strength of artificial fine aggregate substitution with variations of 0% (control), 5%, 10%, 15% and 20% respectively 17.708 Mpa (Quality B), 18.479 Mpa (Quality B) , 18,722 Mpa (Quality B), 17,936 Mpa (Quality B), and 14,749 Mpa (Quality C). In the water absorption test, only paving blocks with a variation of 20% were categorized as C quality, then all the paving block are included in quality A in wear resistance testing. Meanwhile, for the sodium sulfate resistance test, only 0% and 5% variations did not pass the test. The test results show that the use of PET plastic waste, PP plastic waste, and diatomaceous earth as artificial fine aggregate which is substituted for natural fine aggregate at a variation of 10% is able to achieve B quality which is used as parking equipment. Keywords: Waste PET Plastic, PP Plastic Waste, Diatomaceous Earth, Fine Aggregate, Paving Block, SNI 03-0691-1996


2021 ◽  
Vol 4 (2) ◽  
pp. 86
Author(s):  
Darul Niham Wahono ◽  
Zaenuri Arifin ◽  
Yosef Cahyo Setianto Poernomo ◽  
Zendy Bima Mahardana ◽  
Ashabul Yamin

Brick is a building material that has a function as a room sealer. Its larger size, when compared to red brick, makes bricks more in demand in the market. Improving the quality of bricks needs to be done to meet the needs of the building. The use of added materials becomes one of the things that can be considered to improve the nature and quality of bricks. This research aims to find out the strong press and absorption of bricks with the use of coconut pellet fiber. The research was conducted experimentally with the manufacture of test objects in the laboratory. The test object used is in the form of a beam of 30x15x10 cm. The percentage variation of coconut fiber is 5%, 10%, and 15% of the weight mass in bricks. The tests carried out include a strong compressive and water absorption test with reference to the Indonesian National Standard (SNI). The results of water absorption tests obtained the optimum value in bricks with a mixture of 5% fiber which is 6% of the mass of the weight of the brick, while the minimum value is in the brick, 15% fiber, which is 10%. While the compressive strength results get the optimum value on the 5% fiber mix variation, which is 20.1 kg/cm², and the minimum value on the variation of 15% fiber is 8.8 kg/cm². From these results showed that bricks with coconut pellet fiber have not been able to improve the quality of bricks.


Teknika ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Ngudi Hari Crista ◽  
Agus Muldiyanto

<em>The most widely used material as a house wall is red brick, which is relatively cheap and safe to weather compared to other materials. Red bricks are usually in the manufacturing process by traditional means and fabrication. In general red bricks require additional materials of rice husk in the process of making. Much of the "starchy" waste material widely found in Klaten that is not currently utilized, is expected to be used instead of rice husk which is one of the red brick material mixtures.This research will be conducted brick test with mechanical behavior test which includes density test, water absorption test and compressive strength test with red brick made from rice husk mixture as comparison with analysis result of mixture of starch onggok waste. The result of this research is compressive strength of brick with mixture of rice husk larger and has a small water absorption compared with compressive strength of brick with mixture of onggok.</em>


Sand demand is currently very high and constantly increased up to cause problems in the construction industry. In an effort to solve this problem, various studies have been conducted as an alternative to replace the use of sand and among them are the use of quarry dust as a substitute sand. In this study, quarry dust is used as a substitute of sand in the manufacture of interlocking brick cement-sand. However, it has raised questions about the ability of interlocking brick with quarry dust in terms of compressive strength and water absorption compared to interlocking brick with sand that are often used in construction. Interlocking brick made using an appropriate mixture of sand and quarry dust as the main components, cement as a binding agent. Providing 70 samples of interlocking bricks different mixing and all the interlocking brick dimensions are 250mm x 125mm x 100mm. The various percentages of quarry dust that to be used in the experiment. This percentage ratio is required to determine the appropriate percentage to be used in the production of brick in order to produce optimum strength. Interlocking brick will be tested using hydraulic machines for days 7 to days 28 for compressive strength and water absorption test. The results showed that the highest value of compressive strength test is from a sample of 70% quarry dust of 31.07 N/mm ² which consisted ratio of 1 cement: 1.8 sand: 4.2 quarry dust while for water absorption test, the highest reading was recorded by 0 % sample of quarry dust with a ratio of 1 cement mixture: 5.1 sand of 11.8%. As a conclusion, quarry dust content can affect the compressive strength of bricks, thereby increasing the compressive strength of brick and reduce the rate of water absorb.


2019 ◽  
Vol 16 (33) ◽  
pp. 823-840
Author(s):  
M. K. TARABAI ◽  
S. G. de AZEVEDO

This paper discusses a possible solution regarding the final disposal of sludge from Sanitary Sewage Treatment Stations (ET), aiming at environmental preservation. The solid waste generated after the wastewater treatment processes is highly contaminating and detrimental to the area in which it is deposited. Given this, the use of sludge with the application of reuse techniques becomes pertinent, both from the economic point of view and from the ecological point of view. By replacing the use of aggregates from mineral deposits, the main clay raw material in the manufacture of ceramic products (Vieira, 2000), by the treated sludge of WWTP we will save on the sources of granular materials. Aiming its reintegration to the production cycle through the introduction of sludge as raw material incorporated in the ceramic mass in the manufacture of hollow bricks, the viability of use was verified through performance analysis, compared to the control brick made of pottery, without the addition of sludge. Specimens were prepared with three types of samples: 90% clay and 10% sludge; 80% clay and 20% sludge; 70% clay and 30% sludge. Mass loss, water absorption index and compressive strength tests were performed. As for the tests, the specimens with 10% and 20% of sludge were the ones that had better adaptation to the technical requirements, but because it is a larger volume of the residue for the application of reuse techniques, the brick with 20% sludge dosage. is the most suitable. NBR7.171, November 1992: Ceramic Block for masonry; Specification NBR 6.461, June 1983: Masonry Ceramic Block - Compressive Strength Check: Test Method; NBR 8.947, November 1992: Ceramic Tile- Determination of Mass and Water Absorption: Test Method. As for the tests, the specimen with 20% of sludge was the one that had the best adaptation to technical and environmental requirements. The present article approaches a possible solution regarding the destination of the sludge coming from Sanitary Sewage Treatment Stations, aiming at environmental preservation. Aiming at its reintegration into the productive cycle through applications of reuse techniques, the sludge became raw material when the ceramic mass was incorporated into the brick fabrication. Three types of samples were elaborated: 90% of clay and 10% of mud; 80% clay and 20% sludge; 70% clay and 30% sludge. As for the tests, the test specimen with 20% of sludge was the one that had more adequacy to the technical and environmental requirements.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Ersti Yulika Sari ◽  
Polaris Nasution ◽  
Fajri Ramdhan1

Parameters for measuring the physical properties on this research are divided into three elements, including measurement of weight, water absorption, and density. This research was conducted from January to March 2018 to determine the physical properties of wood powder composites and bagasse. The manufacturing and testing process refers to the ASTM and JIS standards. Weight and density testing refer to the ASTM D 792 standard while the water absorption test refers to the JIS A5908 standard. The results showed that the density of wood powder was 0.4175 gr / cm3, and the bagasse was 0.3125 gr / cm3. Then, fiber absorption in units of volume to water and resin were 16.88% and 13.75% respectively. The results showed that the largest water absorption was found in composite wood powder 60% and bagasse 40%, which was 13.47%, and for the highest density values found in wood powder composites as much as 80% or 1,078.29 kg / m3


2013 ◽  
Vol 421 ◽  
pp. 290-295
Author(s):  
Mohammad Taib Mohamad Nurul Azman ◽  
Abu Kassim Masitah ◽  
Ariff Jamaludin Mohd ◽  
Ismail Tayibbah

This research investigated the tensile and water absorption properties of kenaf fibre mat/polyester composites. Treatment using acetylation method has been introduced to improve the properties of product manufactured. The effects of acetylation treatment with three variations of time that were 1, 4 and 24 hours on the kenaf fibre mats were investigated. The MOE of the tensile of treated fibre mat/polyester composite for 1 hour was the highest with value 4589.61 MPa. The tensile strength of treated fibre mat/polyester composite for 4 hours was the highest with value 0.6213 MPa. For water absorption test, the results showed that fibre mat/polyester composite with treatment duration for 1 hour had the lowest water absorption that was 1.23% compared with treatment duration for 4 hours and 24 hours. For overall it can be concluded that the treatment duration of 1 hour was recommended for acetylation method when compared with 4 hours and 24 hours duration treatments. Using acetylation treatment on the kenaf fibre mat/polyester composites was showed improvement on composite and was recommended in short duration of treatment.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1562 ◽  
Author(s):  
Jurgita Malaiškienė ◽  
Olga Kizinievič ◽  
Viktor Kizinievič

The paper analyses the properties (chemical and mineral composition, microstructure, density, etc.) of recycled tannery sludge (TS) and the possibilities for using it in cement mortar mixture. Mortar specimens containing 3–12% of tannery sludge by weight of cement and 3–9% of tannery sludge by weight of sand were tested. Flowability, density, ultrasonic pulse velocity (UPV), flexural and compressive strength, water absorption and sorptivity of the mortar were analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis of tannery sludge and mortar are presented. The tests revealed that replacement of 6% of cement with tannery sludge in the mix increased flexural and compressive strength and UPV values, whereas water absorption decreased. SEM and XRD analysis revealed that specimens with tannery sludge contained lower amounts of ettringite and higher amounts of portlandite; the obtained structure was denser and contained more calcium hydrosilicates (C-S-H). Chromium leaching values in cement mortars were found not to exceed the limit values set forth in Directive 2003/33/EC.


Sign in / Sign up

Export Citation Format

Share Document