scholarly journals Evaluation Method for Thermal Environment in Residential Houses Using Score on Warmth

2019 ◽  
Vol 111 ◽  
pp. 01007
Author(s):  
Yosuke Watanabe ◽  
Yumiko Araki ◽  
Mika Saito ◽  
Chaichang Chen ◽  
Misa Imazu ◽  
...  

The purpose of this study is to verify whether the score on warmth corresponds to the actual rating of subjects with regard to thermal comfort and satisfaction. Experiments were carried out in an experimental house in a climate chamber under five different thermal conditions, in which different combinations of air and floor temperatures were controlled by floor heating or air-conditioning systems. Twenty-four subjects rated their thermal sens2ation and satisfaction in each condition, and evaluated the thermal environment on a 100-point scale. The results of this experiment are as follows. It was suggested that score on warmth based on operative temperature and floor temperature more appropriately evaluates the living environment in Japan than the Predicted Mean Vote model, which assumes uniformity of the thermal environment. The score on warmth is considered a useful thermal environment index, which evaluates the comfort and satisfaction of residential houses in Japan. The score on warmth was 2.8 points when the percentage of comfort rating was more than 80%, and was 3.0 points when the percentage was more than 90%. In conclusion, these results show that it is possible to predict the risk of catching a cold in winter using the score on warmth.

2020 ◽  
Vol 12 (21) ◽  
pp. 8904
Author(s):  
Seung-Ju Choe ◽  
Seung-Hoon Han

The purpose of this research is to examine whether eum-taek, a feng shui theory for the dead, can be applied to Korean modern architecture. In the first step, common environmental factors that are valued in both feng shui and ecological architecture were derived, and then this research reviewed how properly the traditional site assessment method evaluated them; for example, metaphorized basic concepts of the evaluation theory based on territorial settings can be applied to evaluate common environmental factors. For the second step, this paper reviewed whether the evaluation method for feng shui presented in the previous step was applied equally between yang-taek and eum-taek theories, investigated the differences between them in general, and derived environmental factors to be utilized for evaluation in the field of architecture. As a result, it was found that the major concepts presented in the previous step have been commonly used evaluation criteria, regardless of the categories from traditional theories. The third step was to simulate whether sites selected by each theory actually have similar environmental conditions. The simulation analysis found that all analysis sites were able to obtain a higher sun exposure time than the Korean average; therefore, it was considered that their locations could have environmental advantage, in terms of solar radiation and thermal environment. The simulation results confirm that the target sites have a living environment that would be easy for humans to live in. Finally, the simulation results confirm that the eum-taek site has a living environment that is comfortable for humans to live in. If studies of the site assessment method are carried out considering yang-taek and eum-taek with different evaluation categories, the modern applicability of feng shui may increase.


1990 ◽  
Vol 18 ◽  
pp. 112-117
Author(s):  
Shinichi TAKEDA ◽  
Yoshio HANZAWA ◽  
Koichi OGAWA ◽  
Toru TONEGAWA

2021 ◽  
Vol 13 (13) ◽  
pp. 7047
Author(s):  
Nu Yu ◽  
Yao Zhang ◽  
Mengya Zhang ◽  
Haifeng Li

Cabin air quality and thermal conditions have a direct impact on passenger and flight crew’s health and comfort. In this study, in-cabin thermal environment and particulate matter (PM) exposures were investigated in four China domestic flights. The mean and standard deviation of the in-cabin carbon dioxide (CO2) concentrations in two tested flights are 1440 ± 111 ppm. The measured maximum in-cabin carbon monoxide (CO) concentration is 1.2 ppm, which is under the US Occupational Safety and Health Administration (OSHA) permissible exposure limit of 10 ppm. The tested relative humidity ranges from 13.8% to 67.0% with an average of 31.7%. The cabin pressure change rates at the end of the climbing stages and the beginning of the descending stages are close to 10 hPa·min−1, which might induce the uncomfortable feeling of passengers and crew members. PM mass concentrations were measured on four flights. The results show that PM concentrations decreased after the aircraft cabin door closed and were affected by severe turbulences. The highest in-cabin PM concentrations were observed in the oldest aircraft with an age of 13.2 years, and the waiting phase in this aircraft generated the highest exposures.


2002 ◽  
Vol 8 (15) ◽  
pp. 171-174
Author(s):  
Hiroshi YOSHINO ◽  
Hiroshi SATO ◽  
Masuo HIKOSAKA ◽  
Joanghoon LEE ◽  
Teruaki MITAMURA

2020 ◽  
Vol 8 (01) ◽  
pp. 307-313
Author(s):  
Xianshu Leng ◽  
Hong Zhang ◽  
Ding Feng

Pay attention to the home living environment of low-and middle-income groups, study the user-centered design evaluation method to guide the design of home chairs suitable for low-and middle-income groups. Introducing Analytic Hierarchy Process(AHP)into home chairs’ design evaluation, it establishes a different layer and different elements structure model based on sensory experience, behavioral experience, emotional experience and economic experience from the point of user experience. Scoring each element, it calculates and determines the weight value of every element, and forms an evaluation method of home chairs for low-and middle-income Groups. Using the method to evaluate the design schemes of 3 home chairs, it obtains the optimal scheme. Then, surveying the market sales data to verify the accuracy of the result. The evaluation method consists of four major elements: sensory experience(B1), 27%; behavior experience(B2), 41%; emotional experience(B3), 10%; economic experience(B4), 22%. The method can effectively solve the complex comparison of multiple elements in design evaluation and provide a comprehensive method combining qualitative and quantitative methods for product design, and provides reference for products design and evaluation of the same type


Author(s):  
Somaye A. Mohamadi ◽  
Abdulraheem J. Ahmed

<span>Despite their complexity and uncertainty, air conditioning systems should provide the optimal thermal conditions in a building. These controller systems should be adaptable to changes in environmental parameters. In most air conditioning systems, today, there are On/Off controllers or PID in more advanced types, which, due to different environmental conditions, are not optimal and cannot provide the optimal environmental conditions. Controlling thermal comfort of an air conditioning system requires estimation of thermal comfort index. In this study, fuzzy controller was used to provide thermal comfort in an air conditioning system, and neural network was used to estimate thermal comfort in the feedback path of the controller. Fuzzy controller has a good response given the non-linear features of air conditioning systems. In addition, the neural network makes it possible to use thermal comfort feedback in a real-time control.</span>


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2021 ◽  
pp. 1420326X2110345
Author(s):  
Marika Vellei ◽  
William O’Brien ◽  
Simon Martinez ◽  
Jérôme Le Dréau

Recent research suggests that a time-varying indoor thermal environment can lead to energy savings and contribute to boost buildings' energy flexibility. However, thermal comfort standardization has so far considered thermal comfort criteria as constant throughout the day. In general, very little attention has been given to the ‘ time of day' variable in the context of thermal comfort research. In this paper, we show some evidence of a time-varying thermal perception by using: (1) data from about 10,000 connected Canadian thermostats made available as part of the ‘ Donate Your Data' dataset and (2) about 22,000 samples of complete (objective + ‘ right-here-right-now' subjective) thermal comfort field data from the ASHRAE I and SCATs datasets. We observe that occupants prefer colder thermal conditions at 14:00 and progressively warmer ones in the rest of the day, indistinctively in the morning and evening. Neutral temperature differences between 08:00 and 14:00 and 14:00 and 20:00 are estimated to be of the order of 2°C. We hypothesize that the human circadian rhythm is the cause of this difference. Nevertheless, the results of this study are only based on observational data. Thermal comfort experiments in controlled environmental chambers are required to confirm these findings and to better elucidate the effects of light and circadian timing and their interaction on thermal perception.


Sign in / Sign up

Export Citation Format

Share Document