scholarly journals Influence of the parameters of the hydrothermal carbonization of the biomass on the biocoal obtained from peat

2019 ◽  
Vol 114 ◽  
pp. 07003
Author(s):  
Kristina Krysanova ◽  
Alla Krylova ◽  
Victor Zaichenko ◽  
Vladimir Lavrenov ◽  
Vladimir Khaskhachikh

Hydrothermal carbonization is modern low-temperature method to improve characteristics of peat and other types of biomass as a fuel. The influence of methods at different temperatures and different reaction time the physical-chemical and energy properties of the resulting biochar is studied. Characteristics of the initial peat and hydrochar were determined such as elemental composition, ash content, moisture content, heating values. It has been established that with an increase in temperature and reaction time, yield of hydrochar oxygen in it decreases (from 33.1% - initial peat to 19.47% - hydrochar obtained at 230 °C), but carbon (from 52.09% - initial peat to 68.17% - hydrochar obtained at 230 °C) and heating value increases. Also was observed leaching the inorganic component from hydrochar into the water.

2017 ◽  
Vol 41 (4) ◽  
Author(s):  
Carlos Miguel Simões da Silva ◽  
Benedito Rocha Vital ◽  
Angélica de Cassia Oliveira Carneiro ◽  
Aylson Costa Oliveira ◽  
Solange Oliveira Araújo ◽  
...  

ABSTRACT The objective of this study was to evaluate the effect of the final torrefaction temperature on the energy properties of wood. It was applied four treatments with three replicates, consisting of untreated wood particles and particles torrefied at temperatures of 170, 220 and 260ºC. Better physical, chemical and thermal properties of the particles were observed as a function of the torrefaction temperature. Comparing with the control group, the particles torrefied at the highest final temperature (260ºC) showed significant differences in bulk density - from 239 to 396kg/m3; the equilibrium moisture content changed from 12.3 to 5.7%; fixed carbon content - from 13.0 to 24.8%; heating value - from 4,465 to 4,945kcal/kg; and energy density - from 882 to 1,727Mcal/m3. It was concluded that torrefaction had a positive effect on the energy properties of the wood.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3226 ◽  
Author(s):  
Pablo Arauzo ◽  
Maciej Olszewski ◽  
Andrea Kruse

Hydrochar is a very interesting product from agricultural and food production residues. Unfortunately, severe conditions for complete conversion of lignocellulosic biomass is necessary, especially compared to the conversion of sugar compounds. The goal of this work is to improve the conversion of internal carbohydrates by application of a two-steps process, by acid addition and slightly higher water content. A set of experiments at different temperatures (180, 200, and 220 °C), reaction times (2 and 4 h), and moisture contents (80% and 90%) was performed to characterize the solid (high heating value (HHV), elemental) and liquid product phase. Afterwards, acid addition for a catalyzed hydrolysis reaction during hydrothermal carbonization (HTC) and a two-steps reaction (180 and 220 °C) were tested. As expected, a higher temperature leads to higher C content of the hydrochar and a higher fixed carbon (FC) content. The same effect was found with the addition of acids at lower temperatures. In the two-steps reaction, a primary hydrolysis step increases the conversion of internal carbohydrates. Higher water content has no significant effect, except for increasing the solubility of ash components.


FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.


2018 ◽  
Vol 154 ◽  
pp. 01025 ◽  
Author(s):  
Herlian Eriska Putra ◽  
Enri Damanhuri ◽  
Kania Dewi ◽  
Ari Darmawan Pasek

In this paper, the use of banana peel for energy purposes was investigated. Banana peel is a lignocellulosic waste since it is the most widely produced and consumed fruit in Indonesia. Among the others, hydrothermal carbonization (HTC) was chosen as alternative themochemical process, suitable for high moisture biomass. Through a 1 L stirred reactor, hydrothermal treatments were performed under low temperature condition (190, 210 and 230 °C), residence times (30 and 60 min), and biomass to water ratio (1:3, 1:5, and 1:10). Three of product were collected from the process with primary material balance. Solid phase (hydrochar) was evaluated in terms of calorific value, proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of banana peel gave high heating value (HHV) of 20.09 MJ/kg for its char after dried naturally.


2013 ◽  
Vol 3 (2) ◽  
pp. 83-97
Author(s):  
Sugito Sugito ◽  
Hermanto Hermanto ◽  
Arfah Arfah

The objective of research was to determine the effect of slice thickness and frying temperature on the physical, chemical and sensorycharacteristics of pumpkin chips by vacuum frying method. Research used a Factorial Completely Randomized Block Design with 2 treatments and 3 replications. A factor (the slice thickness: 1, 2, and 3 mm) and B factor (frying temperature : 80, 90, and 100oC). The results showed that the slice thickness had significant effect on the crispy texture, yield, and water content of pumpkin chips. The temperature had significant effect on the lightness, chroma, crispy texture, yield, and moisture content. Interaction slice thickness and temperature had significant effect on the water content of pumpkin chips. A3B3 treatment (slice thickness 3 mm and frying temperature 100oC) was the best treatment with physical characteristic (yield 17.47%, crispy texture 183.6 gf, colour with 54.63% lightness, 42.17% chroma and 54.90o hue), chemical cha-racteristic (1.63% water content, 8.08% ash content) and sensory characteristics by scoring preferences 3.48 crispy texture, 3.2 flavour, 2 colour and 3.32 taste. A3B3 treatment had 1.58 dissoluble fiber content, 12.92 mg/mL IC50 antioxidant activity, 21.90 fat rate,1.46 ppm total carotene.


2015 ◽  
Vol 5 (2) ◽  
Author(s):  
Purnawarman Purnawarman ◽  
Nurchayati Nurchayati ◽  
Yesung Allo Padang

Energy crisis in the world especially from fossil fuels which caused by the depletion of non-renewable petroleum reserves. It is therefore necessary to find sources of alternative fuels that are renewable. Biomass is a solid waste that can be used as a fuels source. Peanuts shell and cobs are biomass from agricultural waste which is quite abundant so it is potential to be used as a source of alternative fuels.In this study, peanuts shell biomass combined with charcoal cobs to be made into briquettes by varying the percentage composition of peanuts shell biomass and charcoal cobs as follows 75 : 25, 50 : 50, and 25 : 75. Briquettes that have been printed and then tested its characteristic include heating value, moisture content and ash content.The results show that as the increasing percentage of the charcoal cobs  have a significant influence on the characteristic of the briquettes. Briquettes with mix KKT 25 : ATJ 75 has an higher heating value (HHV) and lower heating value (LHV) the highest is equal to 28.718 kJ/kg and 28.279 kJ/kg, and the lowest percentage of moisture content is equal to 5.854%, but the highest result percentage of ash content is equal to 9.326%. Based on the test of these characteristic, biomass briquettes peanuts shell - charcoal cobs meet quality standards that have been established and eligible to became a source of alternative fuels.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8229
Author(s):  
Sebastian Paczkowski ◽  
Victoria Knappe ◽  
Marta Paczkowska ◽  
Luis Alonzo Diaz Robles ◽  
Dirk Jaeger ◽  
...  

The worldwide transformation from fossil fuels to sustainable energy sources will increase the demand for biomass. However, the ash content of many available biomass sources exceeds the limits of national standards. In this study, short-rotation coppice willow biomass was hydrothermally treated at 150, 170 and 185 °C. The higher heating value increased by 2.6% from x¯ = 19,279 J × g−1 to x¯ = 19,793 J × g−1 at 185 °C treatment temperature. The mean ash content was reduced by 53% from x¯ = 1.97% to x¯ = 0.93% at 170 °C treatment temperature, which was below the limit for category TW1b of the European pellet standard for thermally treated biomass. The nitrogen, sulfur and cadmium concentrations were reduced below the limits for category TW1b of the European biomass pellet standard (N: from 0.52% to 0.34%, limit at 0.5%; S: from 0.051% to 0.024%, limit at 0.04%; Cd: from 0.83 mg × kg−1 to 0.37 mg × kg−1, limit at 0.5 mg × kg−1). The highest reduction rates were sampled for phosphor (80–84%), potassium (78–90%), chlorine (96–98%) and lithium (96–98%). The reduction behavior of the elements is discussed according to the chemical processes at the onset of hydrothermal carbonization. The results of this study show that HTT has the potential to expand the availability of biomass for the increasing worldwide demand in the future.


2018 ◽  
Vol 7 (1) ◽  
pp. 76-85
Author(s):  
Ina Permata Sari ◽  
Herpandi Herpandi ◽  
Shanti Dwita Lestari

The purpose of this research was to observe the effects of threadfin breams surimi (Nemiptarus nematophorus) and mussel (Pilsbryoconcha exilis) to physical, chemical and sensory characteristics of nugget. This research used randomized block design (RBD) consisted of one factor treatment and three replications. Factor treatment consisted of combination ratio threadfin breams surimi and mussel 100% : 0%, 75% : 25%, 50% : 50%, 25% : 75%, 0% : 100%. The variables observed were physical characteristics (elasticity), chemical characteristics (moisture content, ash, protein, fat, carbohydrate, and iron) and sensory analysis on appereance, flavour, taste and texture of the final products. Different combinations of threadfin breams surimi and mussel had significant effect on elasticity (222.53 gf, 278.33 gf, 300.66 gf, 312.13 gf, 452.86 gf), ash content (3.26%, 2.51%, 2.23%, 1.63%, 1.45%), protein content (8.27%, 12.11%, 14.8%, 17.14%, 20.73%), carbohydrate content (17.32%, 14.34%, 11.11%, 8.42%, 3.5%), and iron (23.61%, 18.56%, 12.77%, 7.24%, 1.54%). Based on the results, the greater addition of surimi concentration caused the increasing value of elasticity, protein, and water content. While the greater addition of mussel concentration resulted on the increased value of ash, fat and iron. This research showed that the combination of 75% threadfin breams surimi and 25% mussel produced on nugget with the best characteristics.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Sissar Eka Bimantara ◽  
Euis Nurul Hidayah

Lumpur IPAL pada Kawasan Industri sampai saat ini belum dapat dimanfaatkan dengan baik, pemanfaatan lumpur IPAL menjadi briket merupakan salah satu upaya untuk mengatasi permasalahan limbah lumpur IPAL. Tujuan penelitian ini adalah mengetahui lumpur IPAL dengan campuran serbuk gergaji kayu dapat dijadikan bahan bakar alternatif berupa briket, mengetahui pengaruh variasi lumpur IPAL dan serbuk gergaji kayu terhadap mutu briket berupa kadar abu, nilai kalor, kadar air , dan mengetahui komposisi terbaik antara lumpur IPAL dan serbuk gergaji kayu untuk menghasilkan nilai kalor optimum pada briket. Metodologi penelitian meliputi pengeringan bahan, karbonisasi bahan, penghalusan dan penyaringan bahan 20 mesh (841 µm), 40 mesh (420µm), dan 60 mesh (250 µm), pencetakan dan pengepresan briket, serta pengeringan briket. Selanjutnya dilakukan uji mutu briket, hasil analisis pada briket terbaik terdapat pada perbandingan 20 : 80 dengan menggunakan ayakan 60 mesh, memiliki nilai kalor 4366,8 kal/g, kadar air 1,26% dan kadar abu 1,32%. Nilai kalor pada briket masih belum memenuhi baku mutu dari SNI 4931 Tahun 2010, Minimnya nilai kalor yang dihasilkan bisa juga karena variabel perlakuan, dengan perbandingan yang dilakukan terhadap lumpur dan serbuk gergaji serta menggunakan ukuran ayakan yang berbeda. Kata Kunci : briket, lumpur IPAL, serbuk gergaji kayu. IPAL sludge in the Ngoro Persada Industry has yet to be utilized properly, utilizing IPAL sludge into briquettes is one of the efforts to solve this problem. The aim of this research was to determine the IPAL sludge with a mixture of wood sawdust can be used as an alternative fuel in the form of briquettes, to determine the effect of variations in IPAL sludge and wood sawdust on the quality of briquettes in the form of heat value, ash content and moisture content as well as knowing the best composition between IPAL sludge and wood sawdust to produce briquettes with the best heating value. The research methodology included material drying, carbonization of materials, refining and filtering of 20 mesh (841 μm), 40 mesh (420μm), and 60 mesh (250 μm), printing and pressing briquettes, and briquette drying. Furthermore, briquette quality testing was conducted, the results showed that the best briquettes were at a ratio of 20: 80 using 60 mesh sleve, having a heating value of 4366.8 cal / g, 1.26% moisture content and 1.32% ash content. The calorific value of briquettes still does not meet the quality standards of SNI 4931 of 2010, the lack of heat value produced can also be due to treatment variables, with the comparison carried out on sludge and wood sawdust and using different sieve sizes. Keywords: briquettes, IPAL sludge, wood sawdust.


2021 ◽  
Vol 75 (1) ◽  
pp. 39-51
Author(s):  
Jasmina Popovic ◽  
Mladjan Popovic ◽  
Milanka Djiporovic-Momcilovic ◽  
Ana Prahin ◽  
Vladimir Dodevski ◽  
...  

Particles of beech wood were treated with hot water at the temperature of 150 oC, during 60 min, prior to the pelleting process. The applied hot water pretreatment affected the chemical composition and heating value of particles. Two groups of pellets, designated as PT 10 and PT 20, were produced from treated beech particles, with the moisture content of particles being 10.5 and 20.5 %, respectively. Pellets from nontreated beech particles (PNT) served as controls to assess the hot water pretreatment effects on the pellet properties. Both, the applied pretreatment, and the particle moisture content, affected properties of the obtained pellets. The heating value of PT 10 ad PT 20 pellets has increased for ~6 and 1 %, respectively. The mineral (ash) content in treated pellets decreased for about 24 % in comparison to that in PNT pellets. In addition, the bulk (apparent) density of pellets has increased for 21 % (PT 10) and 10 % (PT 20), as a consequence of the hot water pretreatment of particles. The specific density of PT 10 pellets was for 16 % higher, while the equilibrium moisture content (after conditioning at RH 68 % and 20.1?C) was for about 32 % lower in comparison to the respective properties of PNT pellets.


Sign in / Sign up

Export Citation Format

Share Document