scholarly journals CARACTERIZAÇÃO DE BIOMASSAS PARA A BRIQUETAGEM

FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.

2021 ◽  
Vol 882 (1) ◽  
pp. 012029
Author(s):  
M A Rahmanta

Abstract The Coal Water Slurry (CWS) technology increases the calorific value and changes the phase of coal from solid to liquid. The CWS Plant with a coal capacity of 1.4 t/hour located at Karawang, West Java converts lignite coal to CWS. Coal undergoes pulverizing, upgrading, and slurry-making processes to become CWS. Pulverization is the process of refining coal size into 200 mesh. The upgrading process is through reducing the moisture content in heat exchangers (HE). It occurs in HE where the coal is pressurized to 15 MPa and the temperature is maintained at 330 0C for 30 minutes. The research objective was to determine the CWS characteristics of the South Sumatra Pendopo lignite coal. The method used is through testing where the Pendopo coal is converted into CWS at the CWS Plant. The result shows that Pendopo coal which has a heating value of High Heating Value (HHV) 2,725.00 kCal/kg As Received (AR) has an increase in HHV heating value of 3,218.00 kcal/kg AR when it becomes CWS. The total moisture content of Pendopo coal has decreased from 49.36% to 44.58% when it becomes CWS. The fixed carbon content of Pendopo coal increased from 19.78% AR to 24.01% AR.


2019 ◽  
Vol 693 (1) ◽  
pp. 7-17
Author(s):  
Krissina Camilla Molinari ◽  
Washington Luiz Esteves Magalhães ◽  
Agnieszka Pawlicka ◽  
Gilmara de Oliveira Machado

Author(s):  
Hyungseok Nam ◽  
Amado Maglinao ◽  
Sergio Capareda

Solid manure handling is a major environmental issue confronting animal facilities in the United States. One difficulty in using dairy manure as a fuel source is the presence of sand bedding used for lactating dairy cows. More than 30% of dairy farms use sand beds for a dry and clean environment that prevents bacterial growth [1]. In this study, dairy animal manure obtained directly from waste lagoons was used for the air gasification process. The manure was dried to reduce the moisture down to 5% and a sand separating system was designed to remove some sand bedding materials. Preliminary air gasification experiments showed that the direct use of dairy manure containing 75% ash content, that reflect high sand content, reduced the temperature of the reactor. The study is also aimed at handling unprocessed dairy manure and generating electric power for the on-site use. A high heating value manure is needed to run the gasifier and the produced synthesis gas (or syngas) is fed to an engine coupled with a generator. Some dairy manure gasification work were done using fresh dairy manure. The highest heating value from the dairy manure biomass was found to be 4.5MJ/kg in a fixed-bed gasifier [2]. Another gasification study using a fluidized-bed reactor could produce syngas heating value as high as 4.7MJ/m3 from dairy manure [3]. A bench-scale fluidized bed containing a 3-inch diameter reactor tube with a cyclone and a scrubber was used to gasify dairy manure using air at different temperatures. The sand separated dairy manure used in this study contained approximately 45% ash content. The maximum heating value of the synthesis gas was 3.8MJ/m3 at an operating temperature of 750°C. The syngas will need to be upgraded. To upgrade the synthesis gas heating value, sludge pellets of 18.7MJ/kg were mixed with the dairy manure in different ratios of 10% and 30%. The syngas heating values from mixed manure with sludge pellet were increased to 5MJ/m3 with 10% sludge, and 5.7MJ/m3 with 30% sludge. The sludge used has higher heating value resulting in higher gas HV. The cold gasification efficiency was achieved as high as 36±5% with dairy manure mixed with sludge pellet. At a higher operating temperature, higher efficiency was obtained with increased gas composition of hydrogen and carbon monoxide. This syngas may then be used for power generation as well as possible input gas for the Fisher Tropsch process for liquid biofuel production. The result of the experiments will be a cornerstone for the widespread application of low heating value animal waste for producing high heating value syngas that may be used for electric power generation as a result of various upgrading processes.


2019 ◽  
Vol 2 ◽  
pp. 595
Author(s):  
Suritno Fayanto ◽  
S. Sulwan ◽  
Dwi Sulisworo ◽  
Vivi Hastuti Rufa Mongkito ◽  
H. Hunaidah

This article proposes to explain how the use of rice husk waste as home industry based briquettes. The making of briquettes from rice husk consists of two ways, specifically with the help of a heater and without a heater. To optimize its manufacture and not require much energy, briquettes from rice husk are quite made without using tools in the process of making briquettes, usually preceded by carbonation. The high element content of rice husk that does rice husk has enormous potential if it is processed into briquettes. Some of the elements contained in rice husks are carbon, silica hydrogen, protein, fat, with very low water content and ash content, a relatively high bulk density of 125 kg / m3 and a high heating value of 1,300 kkal. In addition to the abundant rice husk, the manufacturing process is easy and practical so that it has the potential to be developed in the form of a home industry


2019 ◽  
Vol 2 (3) ◽  
pp. 954-963
Author(s):  
Aboubaker AbdallaIbrahim Ali ◽  
Hüseyin Akilli

Dewatered domestic wastewater sludge (DDWS) is one of the largest contributors of waste material in the world, and it immediately elevates local environmental problems, especially in the urban area. The conversion of this material into a usable form of green energy, such as syngas through gasification, can be a vital solution. Hence, this method not only solves the environmental issues related to DDWS disposal but also participates as an energy source. To achieve this goal, the essential fuel characterization, which includes initial moisture content, high heating value, ultimate analysis, and proximate analysis, were carried out to assess the potential energy in DDWS. Due to the high expenses of the successful design of the gasifier reactor, and there are no efficient methods to predict the gasification performance, the model of the DDWS gasification process using ASPEN Plus software was developed. As ASPEN Plus software does not contain a built-in gasifier reactor model, a combination of various reactors is used to simulate the gasification processes. These processes were divided out into two stages. In the first stage, DDWS was decomposed into its element by specifying yield distribution. By using Gibbs free energy minimization approach, the gasification reactions were modeled. The current model was validated with the previously published work. From the characterization findings, DDWS showed high initial moisture content 84.64% and potential energy with 16.84 MJ/kg high heating value. The proximate analysis based on the dry base of DDWS exhibited that more than 55.42 % of their mass is composed of volatile materials, and ash content is found to be less than 25.79%.


2018 ◽  
Vol 14 (4) ◽  
pp. 408-413
Author(s):  
Nur Syairah Mohamad Aziz ◽  
Adilah Shariff ◽  
Nurhayati Abdullah ◽  
Nurhidayah Mohamed Noor

The aim of this study is to investigate the potential of coconut frond as a feedstock for biochar production via slow pyrolysis process.  Proximate, elemental and thermogravimetric analysis were performed to evaluate the chemical and thermal properties of the coconut frond.  The percentage of its lignocellulosic component and high heating value were determined. Surface morphology of coconut frond was examined using field emission scanning electron microscope (FESEM). Coconut frond (CF) contains 78.03±3.91 d.b. wt% of volatile matter, 4.96±0.07 d.b. wt% of ash content and 17.01±3.86 d.b. wt% of fixed carbon. Elemental analysis revealed a sulfur content of 0.94±0.12 %, while the percentage of nitrogen is 0.46±0.33%. The composition of carbon and hydrogen are 34.0±6.22 % and 7.71±0.34 % respectively. The high heating value of CF is 17.77±0.40 MJ/kg. CF consists of 43.91±1.80 % cellulose, 31.58±1.20 % hemicellulose, and 18.15±0.60 % lignin. From thermogravimetric (TG) analysis, it is apparent that the weight loss of CF occurred prominently in the temperature range 200°C - 400°C.  The peaks of the DTG curve at 281.75±0.35 °C and 334.08±0.35°C indicate the weight loss of coconut frond sample due to the degradation of hemicellulose and cellulose, respectively. The FESEM images of CF show its fibrous strands are compact with a few large pores with diameters around 42.5 - 48.1 μm large pores in the center of the CF sample. The results of the analysis show that CF has a potential as a feedstock for biochar production via slow pyrolysis. CF also can be used in other application such as syngas and bio-oil production due to the low lignin percentage and high volatile percentage.


Author(s):  
V. Dhivakhar ◽  
Maju Varghese ◽  
Keerthi M. S. ◽  
S. Kaviya

About 40% of the Global Electricity produced is fuelled by coal. Although Coal has various advantages like good High Heating Value, easy availability etc., it also has various disadvantages. Green House Gas Released from Coal Thermal Power Plants is the single major contributor to Global warming. Coal is also nonrenewable. Hence it is important to analyze the viability of potential alternatives and reduce the usage of coal. In this assessment, various potential replacements of coal have been analyzed based on their High heating value (HHV) and their Global Warming Potential. The Global warming Potential (GWP) of the assessed fuels have been calculated by the Respiratory Quotient (RQ) Factor method. Hence a direct comparison between Coal and other replacements based on their HHV and GWP has been performed.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-10
Author(s):  
Shafwan Amrullah

Desa saat ini didorong menjadi desa mandiri, baik dalam bidang energi maupun ekonomi dengan mengimplementasikan energi terbarukan untuk meningkatkan kemandirian energi sebagai salah satu langkah meningkatkan ekonomi masyarakat. Penelitian ini bertujuan untuk menganalisis potensi penggunaan energi terbarukan seperti Pembangkit Listrik Tenaga Bayu (PLTB), Pembangkit Listrik Tenaga Surya (PLTS), Pembangkit Listrik Tenaga Air (PLTA), dan Konversi Energi Gasifikasi di desa Lendang Nangka, Kabupaten Lombok Timur. Penelitian dilakukan dengan pengumpulan data baik dari BMKG dan pengujian secara langsung menggunakan alat Air Flow Anemometer GM8902 untuk mengetahui kecepatan angin dan DIGITAL TECHNOMETER LX-1010B untuk mengetahui intensitas cahaya matahari. Selain itu dilakukan wawancara kepada pengusaha kecil dan menengah untuk mengetahui penggunaan energi dalam menyokong proses produksinya. Hasil dari penelitian menunjukkan bahwa potensi PLTB yang dapat diemplementasikan adalah PLTB sekala kecil dengan daya sekitar 23,4-632,88 kWh/turbin. Untuk potensi PLTS menghasilkan daya sebesar 410-566 kWh per meter persegi panel surya. Untuk potensi PLTA, turbin yang cocok adalah turbin ukuran kecil dengan potensi daya sekitar 0,3024-2,2194 kWh. Sedangkan untuk potensi penggunaan converter energi jenis gasifikasi dapat dilakukan untuk mengurangi penggunaan bahan bakar tidak terbarukan sekaligus menghemat biaya porduksi. Sebab, nilai High Heating Value gas sintetik yang dihasilkan 1,7 kali lebih besar daripada pembakaran langsung dengan kayu.


2021 ◽  
Vol 25 (6) ◽  
pp. 26-31
Author(s):  
S.V. Polygalov ◽  
G.V. Il’inykh ◽  
N. Stanisavlevich

The results of field and laboratory studies of the component and fractional composition of solid municipal waste (MSW), humidity and ash content of MSW components, which made it possible to evaluate the properties of individual fractions and waste in general, are presented. The fractional composition of MSW was determined by the method of separating waste into five fractions of different sizes: more than 250 mm, 100-250 mm, 50–100 mm, 15–50 mm and less than 15 mm. An assessment of the energy and biological potentials of MSW of various sizes has been carried out. In each fraction, the main biogenic components have been identified, which form the biological potential. The calculation of thermal properties (moisture content, ash, combustible substances, as well as the heat of combustion) for the fractions under consideration has been performed. The dependence of the heat of combustion of MSW on the particle size has been established.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1817 ◽  
Author(s):  
Ramez Abdallah ◽  
Adel Juaidi ◽  
Mahmoud Assad ◽  
Tareq Salameh ◽  
Francisco Manzano-Agugliaro

The first industrial-scale pyrolysis plant for solid tire wastes has been installed in Jenin, northern of the West Bank in Palestine, to dispose of the enormous solid tire wastes in the north of West Bank. The disposable process is an environmentally friendly process and it converts tires into useful products, which could reduce the fuel crisis in Palestine. The gravimetric analysis of tire waste pyrolysis products from the pyrolysis plant working at the optimum conditions is: tire pyrolysis oil (TPO): 45%, pyrolysis carbon black (PCB): 35%, pyrolysis gas (Pyro-Gas): 10% and steel wire: 10%. These results are depending on the tire type and size. It has been found that the produced pyrolysis oil has a High Heating Value (HHV), with a range of 42 − 43   ( MJ / kg ) , which could make it useful as a replacement for conventional liquid fuels. The main disadvantage of using the TPO as fuel is its strong acrid smell and its low flash point, as compared with the other conventional liquid fuels. The produced pyrolysis carbon black also has a High Heating Value (HHV) of about 29 (MJ/kg), which could also encourage its usage as a solid fuel. Carbon black could also be used as activated carbon, printers’ ink, etc. The pyrolysis gas (Pyro-Gas) obtained from waste tires mainly consist of light hydrocarbons. The concentration of H2 has a range of 30% to 40% in volume and it has a high calorific value (approximately 31   MJ / m 3 ), which can meet the process requirement of energy. On the other hand, it is necessary to clean gas before the burning process to remove H2S from Pyro-Gas, and hence, reduce the acid rain problem. However, for the current plant, some recommendations should be followed for more comfortable operation and safer environment work conditions.


Sign in / Sign up

Export Citation Format

Share Document