scholarly journals Magnetic Bearing Proposal Design for a General Unbalanced Rotor System enhanced because of using sensors/actuators based in nanostructures

2019 ◽  
Vol 95 ◽  
pp. 01002
Author(s):  
Jesus A. Calderón ◽  
Eliseo B. Barriga ◽  
Roland Mas ◽  
Luis Chirinos ◽  
Enrique Barrantes ◽  
...  

Rotor systems need bearings in order to keep uniformity of rotational movement transmission. However, bearingsgenerate friction and energy losses due to heating transmisssion through the friction; for this reason, mechanicak bearings are replaced by magnetic bearings owing to avoid energy losing because of friction. We designed Active Magnetic Bearings (AMB) to transmit rotational movement from source of movement (motor) through the rotor to the movement receptor (such as a conveyor belt). Magnetic Bearings need accuracy during System Identification process and a sophisticated control algorithm to get an uniform rotation movement transmission. In this work also it was analyzed and proved by simulations that Active Magnetic Bearings composed with sensors /actuators based in nanostructures are faster and robust compared with AMB based in traditional sensors/actuators. It because, nanostructures receive and send signals better way tan traditional sensors/actuators, because of high oredered nanoarrays improve sensor/actuator properties.

Author(s):  
D. Rawal ◽  
J. Keesee ◽  
R. Gordon Kirk

Abstract This paper presents a modification of existing transfer matrix methods for rotor analysis, to predict the response of rotor systems with active magnetic bearings. The position of the magnetic bearing sensors is taken into account and the effect of changing sensor position on the vibrational characteristics of rotor systems is studied. The results for a simple two-mass rotor system are presented as plots of critical frequency vs. sensor position and amplitude at critical frequency vs. sensor position. A typical eight stage centrifugal compressor rotor is analyzed using the modified transfer matrix code and the results are presented as plots of amplitude vs frequency for different cases of sensor location.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5249
Author(s):  
Karel Kalista ◽  
Jindrich Liska ◽  
Jan Jakl

Verification of the behaviour of new designs of rotor seals is a crucial phase necessary for their use in rotary machines. Therefore, experimental equipment for the verification of properties that have an effect on rotor dynamics is being developed in the test laboratories of the manufacturers of these components all over the world. In order to be able to compare the analytically derived and experimentally identified values of the seal parameters, specific requirements for the rotor vibration pattern during experiments are usually set. The rotor vibration signal must contain the specified dominant components, while the others, usually caused by unbalance, must be attenuated. Technological advances have made it possible to use magnetic bearings in test equipment to support the rotor and as a rotor vibration exciter. Active magnetic bearings allow control of the vibrations of the rotor and generate the desired shape of the rotor orbit. This article presents a solution developed for a real test rig equipped with active magnetic bearings and rotor vibration sensors, which is to be used for testing a new design of rotor seals. Generating the exact shape of the orbit is challenging. The exact shape of the rotor orbit is necessary to compare the experimentally and numerically identified properties of the seal. The generalized notch filter method is used to compensate for the undesired harmonic vibrations. In addition, a novel modified generalized notch filter is introduced, which is used for harmonic vibration generation. The excitation of harmonic vibration of the rotor in an AMB system is generally done by injecting the harmonic current into the control loop of each AMB axis. The motion of the rotor in the AMB axis is coupled, therefore adjustment of the amplitudes and phases of the injected signals may be tedious. The novel general notch filter algorithm achieves the desired harmonic vibration of the rotor automatically. At first, the general notch filter algorithm is simulated and the functionality is confirmed. Finally, an experimental test device with an active magnetic bearing is used for verification of the algorithm. The measured data are presented to demonstrate that this approach can be used for precise rotor orbit shape generation by active magnetic bearings.


2014 ◽  
Vol 494-495 ◽  
pp. 685-688
Author(s):  
Rong Gao ◽  
Gang Luo ◽  
Cong Xun Yan

Active magnetic bearing (AMB) system is a complex integrated system including mechanics, electronic and magnetism. In order to research for the basic dynamic characteristic of rotor supported by AMB, it is necessary to present mathematics method. The dynamics formula of AMB is established using theory means of dynamics of rotator and mechanics of vibrations. At the same tine, the running stability of rotor is analyzed and the example is presented in detail.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Anna Tangredi ◽  
Enrico Meli ◽  
Andrea Rindi ◽  
Alessandro Ridolfi ◽  
Pierluca D’Adamio ◽  
...  

Nowadays, the search for increasing performances in turbomachinery applications has led to a growing utilization of active magnetic bearings (AMBs), which can bring a series of advantages thanks to their features: AMBs allow the machine components to reach higher peripheral speeds; in fact there are no wear and lubrication problems as the contact between bearing surfaces is absent. Furthermore, AMBs characteristic parameters can be controlled via software, optimizing machine dynamics performances. However, active magnetic bearings present some peculiarities, as they have lower load capacity than the most commonly used rolling and hydrodynamic bearings, and they need an energy source; for these reasons, in case of AMBs overload or breakdown, an auxiliary bearing system is required to support the rotor during such landing events. During the turbomachine design process, it is fundamental to appropriately choose the auxiliary bearing type and characteristics, because such components have to resist to the rotor impact; so, a supporting design tool based on accurate and efficient models of auxiliary bearings is very useful for the design integration of the Active Magnetic Bearing System into the machine. This paper presents an innovative model to accurately describe the mechanical behavior of a complete rotor-dynamic system composed of a rotor equipped with two auxiliary rolling bearings. The model, developed and experimentally validated in collaboration with Baker Hughes a GE company (providing the test case and the experimental data), is able to reproduce the key physical phenomena experimentally observed; in particular, the most critical phenomenon noted during repeated experimental combined landing tests is the rotor forward whirl, which occurs in case of high friction conditions and greatly influences the whole system behavior. In order to carefully study some special phenomena like rotor coast down on landing bearings (which requires long period of time to evolve and involves many bodies and degrees of freedom) or other particular events like impacts (which occur in a short period of time), a compromise between accuracy of the results and numerical efficiency has been pursued. Some of the elements of the proposed model have been previously introduced in literature; however the present work proposes some new features of interest. For example, the lateral and the axial models have been properly coupled in order to correctly reproduce the effects observed during the experimental tests and a very important system element, the landing bearing compliant suspension, has been properly modelled to more accurately describe its elastic and damping effects on the system. Furthermore, the model is also useful to characterize the frequencies related to the rotor forward whirl motion.


Author(s):  
Bruno Wagner

This paper recalls the principles and main features of the active magnetic bearings and especially the advantages for turbomachines. Oil-free working and vibration control are part of them. Field experiences are described for different shaft line configurations. Step by step we are going to get totally rid of oil with the introduction of active magnetic bearings together with dry gas seals and gearless drive. Future machines will take the benefit of all this field experience. The trend of the design optimization is the active magnetic bearings in the process gas itself, for a length reduction of shafts. But at the present stage, the active magnetic bearing is a proven technology today.


Author(s):  
E. G. Foster ◽  
V. Kulle ◽  
R. A. Peterson

The installation and operation of an active magnetic bearing in conjunction with a modified mechanical dry gas seal on a natural gas pipeline compressor is presented. The emphasis of this paper is centered on the active magnetic bearing. The active magnetic bearing was developed by Société de Mécanique Magnétique (S2M) of Vernon France. The first successful application to a natural gas pipeline compressor was a co-operative effort between NOVA, AN ALBERTA CORPORATION, S2M, and Magnetic Bearing Incorporated (MBI) of Radford, Virginia. This paper represents a technical and economic assessment of the bearing, including installation and operational data.


2020 ◽  
Vol 40 (2) ◽  
pp. 112-123
Author(s):  
Adis Muminovic ◽  
Sanjin Braut ◽  
Adil Muminovic ◽  
Isad Saric ◽  
Goranka Štimac Rončević

Proportional–integral–derivative (PID) control is the most common control approach used to control active magnetic bearings system, especially in the case of supporting rigid rotors. In the case of flexible rotor support, the most common control is again PID control in combination with notch filters. Other control approaches, known as modern control theory, are still in development process and cannot be commonly found in real life industrial application. Right now, they are mostly used in research applications. In comparison to PID control, PI-D control implies that derivate element is in feedback loop instead in main branch of the system. In this paper, performances of flexible rotor/active magnetic bearing system were investigated in the case of PID and PI-D control, both in combination with notch filters. The performances of the system were analysed using an analysis in time domain by observing system response to step input and in frequency domain by observing a frequency response of sensitivity function.


Author(s):  
Abdul-Hadi G. Abulrub ◽  
M. Necip Sahinkaya ◽  
Clifford R. Burrows ◽  
Patrick S. Keogh

Active Magnetic Bearing (AMB) systems offer various advantages over conventional bearings but due to their limited force capacity, with high levels of vibrations the rotor may come into contact with retainer bearings. Under conventional PID control, when a rotor comes into contact with its retainer bearings it remains in contact, until the rotor is run down and the system shut down. This may not be acceptable in some applications, such as aerospace and automotive applications. In this paper, a recursive open-loop adaptive control (ROLAC) algorithm is presented, as an extension of the existing open loop adaptive controller (OLAC), that updates the control force amplitude and phase at each sampling period for rapid response to changes in external excitations. The effectiveness of the algorithm in counteracting a sudden change of rotor unbalance is demonstrated by simulation and experimental results. The experimental system consists of a flexible 2 m long rotor with a mass of 100 kg supported by two radial active magnetic bearings. A simulation model of the system, including the contact dynamics, was used to assess the feasibility of the suggested controller before applying it to the experimental system. Depending on excitation levels, it is shown that the proposed controller is fast enough to prevent contact in most cases. If contact does occur the impact is minimized, and the method is able to recover the rotor position quickly. The proposed controller is implemented in real time and applied to the experimental system. It is shown that the controller works efficiently as predicted by the simulation studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Seong-yeol Yoo ◽  
Myounggyu D. Noh

Active magnetic bearings consume much less power than conventional passive bearings, especially when power-minimizing controllers are employed. Several power-minimizing controllers have been proposed, such as variable bias controllers and switching controllers. In this paper, we present an appraisal of the power-minimizing control algorithms for active magnetic bearings in an attempt to provide an objective guideline on the merits of the control algorithms. In order for the appraisal, we develop an unified and consistent model of active magnetic bearing systems. The performances of the power-minimizing controllers are assessed through this model. The results show that the power-minimizing controllers indeed save considerable power when the machine state is relatively steady. However, a simple proportional-derivative type controller is on a par with the much more complex power-minimizing controllers in terms of power consumption when the machine is experiencing transient loads.


Sign in / Sign up

Export Citation Format

Share Document