scholarly journals Application of laser remote sensing technology and super continuous spectrum laser

2020 ◽  
Vol 165 ◽  
pp. 03002
Author(s):  
Li Jing ◽  
Che Ying ◽  
Jin Meishan ◽  
Zhai Yannan ◽  
Ding Changhong

Fiber optic super continuous spectrum laser technology is a new technology developed in recent years. It takes into account the advantages of good alignment of laser source, high energy density and wide wavelength range of ordinary white light source, which can not only accurately remote sense distant target, but also obtain hyperspectral information of distant target. Super continuous spectrum of laser radar is a kind of remote sensing monitoring instrument, it can obtain three-dimensional spectral information of the target, and can be accurately detected in the night of distant high spectral information, the all-weather, three-dimensional spectrum detection method with the traditional passive remote sensing compared with single/multiband laser radar technology has incomparable advantages. Based on the development trend of lidar abroad, the development status of super-continuous spectrum lidar in China and the problems in remote sensing detection of oil spill, this paper introduces the feasibility of using super-continuous spectrum laser to monitor oil spill in the sea, which lays a foundation for further research.

2021 ◽  
Vol 22 (20) ◽  
pp. 11041
Author(s):  
Yajing Yan ◽  
Yanxu Chen ◽  
Yongyan Li ◽  
Xiaoyu Wu ◽  
Chao Jin ◽  
...  

By virtue of the high theoretical capacity of Si, Si-related materials have been developed as promising anode candidates for high-energy-density batteries. During repeated charge/discharge cycling, however, severe volumetric variation induces the pulverization and peeling of active components, causing rapid capacity decay and even development stagnation in high-capacity batteries. In this study, the Si/Fe2O3-anchored rGO framework was prepared by introducing ball milling into a melt spinning and dealloying process. As the Li-ion battery (LIB) anode, it presents a high reversible capacity of 1744.5 mAh g−1 at 200 mA g−1 after 200 cycles and 889.4 mAh g−1 at 5 A g−1 after 500 cycles. The outstanding electrochemical performance is due to the three-dimensional cross-linked porous framework with a high specific surface area, which is helpful to the transmission of ions and electrons. Moreover, with the cooperation of rGO, the volume expansion of Si is effectively alleviated, thus improving cycling stability. The work provides insights for the design and preparation of Si-based materials for high-performance LIB applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuolin Tang ◽  
Mengming Yuan ◽  
Huali Zhu ◽  
Guang Zeng ◽  
Jun Liu ◽  
...  

Nowadays, Li–CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li–CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li–CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g−1, a low overpotential of 1.25 V, and a longer cycle performance.


Author(s):  
Brandon M. Wilson ◽  
Aaron Koskelo

Los Alamos National Laboratory is interested in developing high-energy-density physics validation capabilities for its multiphysics code xRAGE. xRAGE was recently updated with the laser package Mazinisin to improve predictability. We assess the current implementation and coupling of the laser package via validation of laser-driven, direct-drive spherical capsule experiments from the Omega laser facility. The ASME V&V 20-2009 standard is used to determine the model confidence of xRAGE, and considerations for high-energy-density physics are identified. With current modeling capabilities in xRAGE, the model confidence is overwhelmed by significant systematic errors from the experiment or model. Validation evidence suggests cross-beam energy transfer as a dominant source of the systematic error.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16879-16885 ◽  
Author(s):  
Ya Wang ◽  
Hui Dou ◽  
Bing Ding ◽  
Jie Wang ◽  
Zhi Chang ◽  
...  

A symmetric capacitor based on facilely synthesized three-dimensional oriented porous carbon nanosheets delivers high energy density.


NANO ◽  
2018 ◽  
Vol 13 (01) ◽  
pp. 1850013 ◽  
Author(s):  
Chuanyin Xiong ◽  
Tiehu Li ◽  
Tingkai Zhao ◽  
Alei Dang ◽  
Xianglin Ji ◽  
...  

In this paper, a facile method is designed to fabricate three-dimensional (3D) graphene (GR)/manganese dioxide (MnO2) nanowall electrode material. The 3D GR/MnO2 hybrid is prepared by a combination of electrochemical deposition (ELD) and electrophoresis deposition (EPD), followed by thermal reduction (TR). Firstly, the 3D graphene oxide (GO)/MnO2 hybrid is obtained by the ELD–EPD method. Secondly, the 3D GR/MnO2 hybrid is obtained through hydrogen reduction at a certain temperature. The as-fabricated hybrid has been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The electrochemical properties have been also measured by cyclic voltammetry. The results showed that the 3D GR/MnO2 nanowalls hybrid has a high specific capacitance of 266.75[Formula: see text]Fg[Formula: see text] and a high energy density of 25.36[Formula: see text]Whkg[Formula: see text]. Moreover, a high specific capacitance (240.15[Formula: see text]Fg[Formula: see text]) at a high scan rate of 200[Formula: see text]mVs[Formula: see text] (90% capacity retention) has been also obtained. Additionally, the hybrid can serve directly as the electrodes of supercapacitor without adding binder. This work provides a novel road to fabricate a binder-free 3D GR-based hybrid for high-performance energy storage devices.


Author(s):  
Yogesh Kumar Sonia ◽  
Mahesh Kumar Paliwal ◽  
Sumanta Kumar Meher

In the context to develop superior-performance all-solid-state hybrid supercapacitor devices, with excellent charge storage, energy & power density, working stability and rate efficiency, herein we have adopted an anion-exchange method...


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1602 ◽  
Author(s):  
Jun-Ping Hu ◽  
Hang Sheng ◽  
Qi Deng ◽  
Qiang Ma ◽  
Jun Liu ◽  
...  

LiNixCoyMnzO2 (LNCM)-layered materials are considered the most promising cathode for high-energy lithium ion batteries, but suffer from poor rate capability and short lifecycle. In addition, the LiNi1/3Co1/3Mn1/3O2 (NCM 111) is considered one of the most widely used LNCM cathodes because of its high energy density and good safety. Herein, a kind of NCM 111 with semi-closed structure was designed by controlling the amount of urea, which possesses high rate capability and long lifespan, exhibiting 140.9 mAh·g−1 at 0.85 A·g−1 and 114.3 mAh·g−1 at 1.70 A·g−1, respectively. The semi-closed structure is conducive to the infiltration of electrolytes and fast lithium ion-transfer inside the electrode material, thus improving the rate performance of the battery. Our work may provide an effective strategy for designing layered-cathode materials with high rate capability.


Author(s):  
Selvarasu Muthulakshmi ◽  
Doraisamyraja Kalaivani

In the crystal structure of the title molecular salt, C5H6N+·C6H2N3O8−(systematic name: pyridinium 3-hydroxy-2,4,6-trinitrophenolate), the pyridinium cation and the 3-hydroxy-2,4,6-trinitrophenolate anion are linked through bifurcated N—H...(O,O) hydrogen bonds, forming anR12(6) ring motif. The nitro groupparawith respect to phenolate ion forms an intramolecular hydrogen bond with the adjacent phenolic –OH group, which results in anS(6) ring motif. The nitro group flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups deviate only slightly from the plane of the benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3)°. In the crystal, the 3-hydroxy-2,4,6-trinitrophenolate anions are linked through O—H...O hydrogen bonds, forming chains along [100]. These anionic chains, to which the cations are attached, are linkedviaC—H...O hydrogen bonds, forming a three-dimensional structure. Impact friction sensitivity tests and TGA/DTA studies on the title molecular salt imply that it is an insensitive high-energy-density material.


Sign in / Sign up

Export Citation Format

Share Document