scholarly journals Hydrogen production by photocatalysis method of glutamic acid and activated carbon

2020 ◽  
Vol 181 ◽  
pp. 01009
Author(s):  
Yepy Komaril Sofi’i ◽  
Eko Siswanto ◽  
Winarto ◽  
I Nyoman Gede Wardana

This research is purposed to produces hydrogen gas as an alternative fuels by environmentally friendly photo catalysis method. The photo catalyst was made of glutamic acid (C5H9NO4) and activated carbon both are dissolved in water in closed glass tube. In addition, halogen lamp with wavelength of 560 nm-580 nm was used as the lighting source. The heat from halogen lamp makes an electron orbit in the catalyst to be elliptical and polar. The photon from halogen lamp makes the electron leaps from its orbit. While the defective graphene on activated carbon gets energy from heat and photon, they will generate a magnetic field. This magnetic field energizes electron spin in glutamic acid and water while the active force in the defect of the carbon attracts the carbon atom in glutamic acid that makes it becomes more active. As a result hydrogen is produced from water. Hydrogen gas produced by the system was measured by MQ-8 sensor inside the reactor tube. The sensor was connected to microcontroller and recorded into computer memory with Arduino Uno Software. Photo catalysis process was tested for 20 minutes. The result shows that the highest hydrogen production occurs at glutamic acid solution with 225 ppm activated carbon.

2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012075
Author(s):  
Purnami ◽  
ING. Wardana ◽  
Sudjito ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

2021 ◽  
Vol 874 ◽  
pp. 159930
Author(s):  
Jiangfan Sun ◽  
Mingcai Yin ◽  
Yixian Li ◽  
Kaiyue Liang ◽  
Yaoting Fan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2136
Author(s):  
Karl Sohlberg

Extraction of hydrogen from hydrocarbons is a logical intermediate-term solution for the escalating worldwide demand for hydrogen. This work explores the possibility of using a single membrane to accomplish both the catalytic dehydrogenation and physical separation of hydrogen gas as a possible way to improve the efficiency of hydrogen production from hydrocarbon sources. The present analysis shows that regions of pressure/temperature space exist for which the overall process is thermodynamically spontaneous (ΔG < 0). Each step in the process is based on known physics. The rate of hydrogen production is likely to be controlled by the barrier to hydrogen abstraction, with the density of H-binding sites also playing a role. A critical materials issue will be the strength of the oxide/metal interface.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 891
Author(s):  
Ken-ichi Fujita ◽  
Takayoshi Inoue ◽  
Toshiki Tanaka ◽  
Jaeyoung Jeong ◽  
Shohichi Furukawa ◽  
...  

A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesulfonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glucose proceeded.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Emmi Välimäki ◽  
Lasse Yli-Varo ◽  
Henrik Romar ◽  
Ulla Lassi

The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review, methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes, known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane, respectively, appear to have the greatest potential for hydrogen production. In particular, the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.


2012 ◽  
Vol 1 (3) ◽  
pp. 75 ◽  
Author(s):  
W.D.P Rengga ◽  
M. Sudibandriyo ◽  
M Nasikin

Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy. Keywords: adsorption; bamboo; formaldehyde; modified activated carbon; nano size particles


2006 ◽  
Vol 5 (4) ◽  
pp. 316-324 ◽  
Author(s):  
Tomoyuki MURAKAMI ◽  
Atsuhiko TERADA ◽  
Tetsuo NISHIHARA ◽  
Yoshiyuki INAGAKI ◽  
Kazuhiko KUNITOMI

2016 ◽  
Vol 4 (7) ◽  
pp. 2445-2452 ◽  
Author(s):  
Mohammad Ziaur Rahman ◽  
Jingrun Ran ◽  
Youhong Tang ◽  
Mietek Jaroniec ◽  
Shi Zhang Qiao

We introduce a three-step method (co-polymerization, surface activation and exfoliation) for the first time to synthesize sub-nanometer-thin carbon nitride nanosheets as highly efficient hydrogen evolution photocatalysts.


Sign in / Sign up

Export Citation Format

Share Document