scholarly journals Pluripotency and differentiation of embryonic stem cells

2020 ◽  
Vol 185 ◽  
pp. 04034
Author(s):  
Yinyin Liu ◽  
Haibo Zhao ◽  
Liang Liang ◽  
Peilei Fan ◽  
Yujia Zhao ◽  
...  

Mouse embryonic stem (ES) cells derive from the inner cell mass of an early embryo called blastocyst, making them promising resource for regenerative medicine. They possess two unique properties: self-renewal and pluripotency. Different ways can be used to assess which extracellular signal and factor inside ES cells has an impact on the pluripotency of ES cells. Nowadays, many extracellular signals and transcription factors have been identified, such as extracellular signals like LIF and transcription factors like Oct4. Studying the mechanism and function of these factors offers great insight and advance our understanding of pluripotency and self-renewal and thus shed light on regenerative medicine.

2006 ◽  
Vol 26 (20) ◽  
pp. 7479-7491 ◽  
Author(s):  
Laura Pereira ◽  
Fei Yi ◽  
Bradley J. Merrill

ABSTRACT The dual function of stem cells requires them not only to form new stem cells through self-renewal but also to form lineage-committed cells through differentiation. Embryonic stem cells (ESC), which are derived from the blastocyst inner cell mass, retain properties of self-renewal and the potential for lineage commitment. To balance self-renewal and differentiation, ESC must carefully control the levels of several transcription factors, including Nanog, Sox2, and Oct4. While molecular mechanisms promoting transcription of these genes have been described, mechanisms preventing excessive levels in self-renewing ESC remain unknown. By examining the function of the TCF family of transcription factors in ESC, we have found that Tcf3 is necessary to limit the steady-state levels of Nanog mRNA, protein, and promoter activity in self-renewing ESC. Chromatin immunoprecipitation and promoter reporter assays showed that Tcf3 bound to a promoter regulatory region of the Nanog gene and repressed its transcriptional activity in ESC through a Groucho interaction domain-dependent process. The absence of Tcf3 caused delayed differentiation of ESC in vitro as elevated Nanog levels persisted through 5 days of embryoid body formation. These new data support a model wherein Tcf3-mediated control of Nanog levels allows stem cells to balance the creation of lineage-committed and undifferentiated cells.


1993 ◽  
Vol 13 (12) ◽  
pp. 7971-7976
Author(s):  
L M Whyatt ◽  
A Düwel ◽  
A G Smith ◽  
P D Rathjen

Embryonic stem (ES) cells, derived from the inner cell mass of the preimplantation mouse embryo, are used increasingly as an experimental tool for the investigation of early mammalian development. The differentiation of these cells in vitro can be used as an assay for factors that regulate early developmental decisions in the embryo, while the effects of altered gene expression during early embryogenesis can be analyzed in chimeric mice generated from modified ES cells. The experimental versatility of ES cells would be significantly increased by the development of systems which allow precise control of heterologous gene expression. In this paper, we report that ES cells are responsive to alpha and beta interferons (IFNs). This property has been exploited for the development of inducible ES cell expression vectors, using the promoter of the human IFN-inducible gene, 6-16. The properties of these vectors have been analyzed in both transiently and stably transfected ES cells. Expression was minimal or absent in unstimulated ES cells, could be stimulated up to 100-fold by treatment of the cells with IFN, and increased in linear fashion with increasing levels of IFN. High levels of induced expression were maintained for extended periods of time in the continuous presence of the inducing signal or following a 12-h pulse with IFN. Treatment of ES cells with IFN did not affect their growth or differentiation in vitro or compromise their developmental potential. This combination of features makes the 6-16-based expression vectors suitable for the functional analysis of developmental control control genes in ES cells.


2021 ◽  
pp. 21-37
Author(s):  
Jonathan Slack

‘Embryonic stem cells’ focuses on embryonic stem (ES) cells, which are grown in tissue culture from the inner cell mass of a mammalian blastocyst-stage embryo. Human ES cells offer a potential route to making the kinds of cells needed for cell therapy. ES cells were originally prepared from mouse embryos. Although somewhat different, cells grown from inner cell masses of human embryos share many properties with mouse ES cells, such as being able to grow without limit and to generate differentiated cell types. Mouse ES cells have so far been of greater practical importance than those of humans because they have enabled a substantial research industry based on the creation of genetically modified mice.


2006 ◽  
Vol 18 (2) ◽  
pp. 199
Author(s):  
C.-H. Park ◽  
S.-G. Lee ◽  
D.-H. Choi ◽  
M.-G. Kim ◽  
C. K. Lee

Embryonic germ (EG) cells, derived from primordial germ cells in the developing fetus, are similar to embryonic stem (ES) cells in terms of expression pattern of undifferentiated markers and their ability to colonize both the somatic and the germ cell lines following injection into a host blastocyst, which has been proven in mouse. Several studies using porcine EG cells have shown that it is possible to produce somatic chimeras after blastocyst injection. However, not only was the degree of reported chimerism low, but also there has been no report about the fate of injected EG cells in porcine blastocysts. This study was designed to observe the distribution pattern of porcine EG cells in chimeric blastocyst after injection into cleavage-stage porcine embryos. To ascertain development of microinjected porcine embryos with EG cells, 10 to 15 EG cells were injected into cleavage stage of in vitro fertilized embryos and cultured up to blastocyst. Also, porcine EG cells were labeled with DiO (Invitrogen, Carlsbad, CA) on the cell membrane or transfected with green fluorescent protein gene to observe whether the EG cells injected in the host embryo would incorporate into the inner cell mass (ICM) or trophectoderm (TE). Chimeric embryos were produced and allowed to develop into blastocysts to investigate the injected EG cells would come to lie in ICM and/or TE of the blastocyst, by scoring their position. In result, developmental rate was similar in all treatments. In all treatments, EG cells were mainly allocated in both ICM and TE of the chimeric blastocysts. These results suggest that examining the allocation pattern of injected EG cells, maintained pluripotency in vitro, could provide clues of differentiation process in vivo. Furthermore, to enhance the allocation of EG cells into the embryonic lineage, it would be required to optimize the culture condition for EG cells as well as embryos. Further experiment are needed to determine whether the injected EG cells could maintain their properties throughout the environment in the embryonic development in vitro. Table 1. Distribution of the porcine EG cells microinjected into cleavage-stage embryos


2008 ◽  
Vol 20 (1) ◽  
pp. 223 ◽  
Author(s):  
T. Lonergan ◽  
A. Harvey ◽  
J. Zhao ◽  
B. Bavister ◽  
C. Brenner

The inner cell mass (ICM) of the blastocyst develops into the fetus after uterine implantation. Prior to implantation, ICM cells synthesize ATP by glycolytic reactions. We now report that cells of the ICM in 3.5-day-old mouse embryos have too few mitochondria to be visualized with either Mitotracker red (active mitochondria) or an antibody against complex I of OXPHOS. By comparison, all of the surrounding trophectoderm cells reveal numerous mitochondria throughout their cytoplasm. It has largely been assumed that embryonic stem (ES) stem cells derived from the ICM also have few mitochondria, and that replication of mitochondria in the ES cells does not begin until they commence differentiation. We further report that mouse E14 ES cells and monkey ORMES 7 ES cells have considerable numbers of active mitochondria when cultured under standard conditions, i.e., 5% CO2 in air. Both the mouse E14 and monkey ES cell lines expressed two markers of undifferentiated cells, Oct-4 and SSEA-4, and monkey ES cells expressed the undifferentiated cell marker Nanog; however, Oct-4 is nonspecific in monkey ES cells because trophectoderm also expresses this marker, unlike in mice. Ninety-nine percent of the E14 cells examined, and 100% of the ORMES 7 cells, have a visible mitochondrial mass when stained with either Mitoracker red or with an antibody against OXPHOS complex I. The ATP content in the mouse E14 cells (4.13 pmoles ATP/cell) is not significantly different (P = 0.76) from that in a mouse fibroblast control (3.75 pmoles ATP/cell). Cells of the monkey ORMES 7 cell line had 61% of the ATP/cell content (7.55 pmoles ATP/cell) compared to the monkey fibroblast control (12.38 pmoles ATP/cell). Both cell lines expressed two proteins believed to indicate competence of mitochondria to replicate: PolG, the polymerase used to replicate the mitochondrial genome, and TFAM, a nuclear-encoded transcription factor reported to regulate several aspects of mitochondrial function. Both proteins were found to co-localize in the mitochondria. We conclude that when the ICMs are isolated from blastocysts and used to establish these two ES cell lines in cell culture, mitochondrial biosynthesis is activated.


2009 ◽  
Vol 21 (9) ◽  
pp. 23
Author(s):  
T. A. L. Brevini ◽  
G. Pennarossa ◽  
L. Attanasio ◽  
B. Gasparrini ◽  
F. Gandolfi

Porcine pluripotent ES cell lines are a promising tool for biotechnology, biomedical and developmental biology studies. However, no conclusive results have been obtained to derive genuine ES cells in the pig. Here we compare derivation efficiency of putative ES cells from IVF versus parthenogenetic pig embryos. We describe proliferation ability and doubling time, we study pluripotency markers and telomerase activity (TA) of the cell lines obtained. Pig oocytes were either fertilized in vitro or parthenogenetically activated. Blastocysts were subjected to immuno-surgery. Inner cell mass were plated and outgrowth expansion was monitored daily. Self renewal molecules were studied by RT-PCR and/or immunocytochemistry for up to 42 passages. TA was measured every five passages. The results obtained indicate that stable cell lines can be generated from IVF and parthenogenetic embryos. The latter appeared less resilient to immuno-surgery but demonstrated a higher ability to produce outgrowths. 77% of the parthenogenetic lines vs only 33% of the IVF ones expressed pluripotency markers and displayed high TA. Regardless to their origin, colonies showed a latency growth period in the 48 hours after plating, they grew exponentially between day 3 and 6 and then, proliferation rate was greatly reduced. Doubling time was estimated to be 31.5 hours. In both IVF and parthenogenetic cell lines, positivity for Oct-4, Nanog, Sox-2, Rex-1, SSEA-4, Alkaline phosphatase, TRA-1-81 and STAT3 was detected; no signal for LIF-Receptor beta and gp130 was shown. These results indicate that the main pluripotency network related molecules are expressed in the porcine species, while a classical LIF-Receptor beta- gp130-STAT3 activation pathway does not appear to be involved in the maintenance of self renewal. Finally, every cell lines expressed high TA, which was turned down once cells were induced to differentiate, indicating a physiologically normal control of TA in these cells.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Paulina A. Latos ◽  
Angela Goncalves ◽  
David Oxley ◽  
Hisham Mohammed ◽  
Ernest Turro ◽  
...  

Abstract Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.


2008 ◽  
Vol 411 (2) ◽  
pp. e5-e7 ◽  
Author(s):  
Angie Rizzino

Three transcription factors, Sox2, Oct-3/4 and Nanog, have been identified as master regulators that orchestrate mammalian embryogenesis as well as the self-renewal and pluripotency of ES (embryonic stem) cells. Efforts to understand how these transcription factors function have shown that they have a special property in common. Small changes in the expression of any one of these factors dramatically alter the self-renewal and pluripotency of ES cells. In this way, each functions as a molecular rheostat to control the behaviour of ES cells. Recent studies have begun to examine the molecular mechanisms that regulate the levels of these transcription factors. In this issue of the Biochemical Journal, Mullin and co-workers report that Nanog can self-associate to form dimers. Importantly, they also show that the domain responsible for dimerization is also needed for Nanog to sustain the self-renewal of ES cells in the absence of the cytokine LIF (leukaemia inhibitory factor). On the basis of their studies, they propose a novel mechanism for regulating the interactions between Nanog and other nuclear proteins.


2009 ◽  
Vol 21 (9) ◽  
pp. 63
Author(s):  
L. Ganeshan ◽  
C. O'Neill

The developmental viability of the early embryo requires the formation of the inner cell mass (ICM) at the blastocyst stage. The ICM contributes to all cell lineages within the developing embryo in vivo and the embryonic stem cell (ESC) lineage in vitro. Commitment of cells to the ICM lineage and its pluripotency requires the expression of core transcription factors, including Nanog and Pou5f1 (Oct4). Embryos subjected to culture in vitro commonly display a reduced developmental potential. Much of this loss of viability is due to the up-regulation of TRP53 in affected embryos. This study investigated whether increased TRP53 disrupts the expression of the pluripotency proteins and the normal formation of the ICM lineage. Mouse C57BL6 morulae and blastocysts cultured from zygotes (modHTF media) possessed fewer (p < 0.001) NANOG-positive cells than equivalent stage embryos collected fresh from the uterus. Blocking TRP53 actions by either genetic deletion (Trp53–/–) or pharmacological inhibition (Pifithrin-α) reversed this loss of NANOG expression during culture. Zygote culture also resulted in a TRP53-dependent loss of POU5F1-positive cells from resulting blastocysts. Drug-induced expression of TRP53 (by Nutlin-3) also caused a reduction in formation of pluripotent ICM. The loss of NANOG- and POU5F1-positive cells caused a marked reduction in the capacity of blastocysts to form proliferating ICM after outgrowth, and a consequent reduced ability to form ESC lines. These poor outcomes were ameliorated by the absence of TRP53, resulting in transmission distortion in favour of Trp53–/– zygotes (p < 0.001). This study shows that stresses induced by culture caused TRP53-dependent loss of pluripotent cells from the early embryo. This is a cause of the relative loss of viability and developmental potential of cultured embryos. The preferential survival of Trp53–/– embryos after culture due to their improved formation of pluripotent cells creates a genetic danger associated with these technologies.


Author(s):  
Andras Nagy ◽  
Janet Rossant

Embryonic stem (ES) cells behave like normal embryonic cells when returned to the embryonic environment after injection into a host blastocyst or after aggregation with earlier blastomere stage embryos. In such chimeras, ES cells behave like primitive ectoderm or epiblast cells (1), in that they contribute to all lineages of the resulting fetus itself, as well as to extraembryonic tissues derived from the gastrulating embryo, namely the yolk sac mesoderm, the amnion, and the allantois. However, even when aggregated with preblastocyst stage embryos, ES cells do not contribute to derivatives of the first two lineages to arise in development, namely, the extraembryonic lineages: trophoblast and primitive endoderm (2). The pluripotency of ES cells within the embryonic lineages is critical to their use in introducing new genetic alterations into mice, because truly pluripotent ES cells can contribute to the germline of chimeras, as well as all somatic lineages. However, the ability of ES cells to co-mingle with host embryonic cells, specifically in the embryonic, but not the major extraembryonic lineages, opens up a variety of possibilities for analysing gene function by genetic mosaics rather than by germline mutant analysis alone (3). There are two basic methods for generating pre-implantation chimeras in mice, whether it be embryo ↔ embryo or ES cell ↔ embryo chimeras. Blastocyst injection, in which cells are introduced into the blastocoele cavity using microinjection pipettes and micromanipulators, has been the method of choice for most ES cell chimera work (see Chapter 4). However, the original method for generating chimeras in mice, embryo aggregation, is considerably simpler and cheaper to establish in the laboratory. Aggregation chimeras are made by aggregating cleavage stage embryos together, or inner cell mass (ICM) or ES cells with cleavage stage embryos, growing them in culture to the blastocyst stage, and then transferring them to the uterus of pseudopregnant recipients to complete development. This procedure can be performed very rapidly by hand under the dissecting microscope, thus making possible high throughput production with minimal technical skill (4). In this chapter we describe some of the uses of pre-implantation chimeras, whether made by aggregation or blastocyst injection, but focus on the technical aspects of aggregation chimera generation. We also discuss the advantages and disadvantages of aggregation versus blastocyst injection for chimera production.


Sign in / Sign up

Export Citation Format

Share Document