scholarly journals Research and Development of Ship Waste Heat Driven S-CO2 Power Generation Coupled T-CO2 Refrigeration System

2020 ◽  
Vol 194 ◽  
pp. 01036
Author(s):  
Min Li ◽  
Yongqian Zhang ◽  
Youjian Wu ◽  
Ruitao Chen ◽  
Qianxi Zhang ◽  
...  

Most of the exhaust temperature of ships is above 300℃, usually this part of waste heat would be directly discharged into the environment, not fully utilized. In order to improve the energy efficiency ratio of ship storage and transportation more effectively, domestic and foreign counterparts have done a lot of technical research on the recovery and utilization of ship waste heat, but most of them are based on a single application perspective. Emphasizing the application of multi-angle combined waste heat, driven by waste heat for CO2 supercritical power generation coupling trans-critical refrigeration system was proposed and designed. While the combined system recovered waste heat for power generation, the functions of refrigerating cooling and seawater desalination were realized by using the properties of CO2 working medium. Taking Fuyuan Yu 7861 ocean-going fishing boat as a design case, the relevant thermal calculation and equipment matching of CO2 supercritical power-transcritical refrigeration system driven by waste heat recovery were targeted. The results showed that the total power consumption of the system is 34.171KW, the waste heat power generation efficiency is 12.9%, the refrigeration performance coefficient is 2.368, the energy saving effect is remarkable, and the energy saving and emission reduction are realized.

Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


Author(s):  
Owen Sullivan ◽  
Saibal Mukhopadhyay ◽  
Satish Kumar

Thermoelectric generators (TEGs) can significantly improve the net power consumption and battery life of the mobile devices or high performance devices by generating power from the waste heat of these devices. Recent advancements show that the ultrathin thermoelectric devices can be fabricated and integrated within a microelectronic package. This paper first investigates the power generation by a single ultrathin TEG embedded within a micro-electronic package considering several key factors such as load resistance, chip heat flux, and proximity of the TEG to chip. We observe that the power generation from TEGs increases with increasing background heat flux on chip or when TEGs are moved closer to the chip. After the investigation of a single TEG, an array of embedded TEGs is considered in order to analyze the influence of multiple TEGs on total power generation and conversion efficiency. Increasing the number of TEGs from one to nine increase the useful power generation from 72.9 mW to 378.4 mW but decreases the average conversion efficiency from 0.47% to 0.32%. This suggests that average power generated per TEG gradually decrease from 72.9 mW to 42.0 mW when number of TEGs is increased from one to nine. However, the total useful power generated using nine TEGs is significant and emphasize the benefits of using embedded TEGs to reduce net power consumption in electronics packages.


2013 ◽  
Vol 21 (03) ◽  
pp. 1350016 ◽  
Author(s):  
HADI GANJEHSARABI ◽  
IBRAHIM DINCER ◽  
ALI GUNGOR

In the present study, a thermodynamic model is proposed to analyze and assess the performance, through energy and exergy, of a cascade active magnetic regenerative (AMR) refrigerator operation a regenerative Brayton cycle. This cascade refrigeration system works with Gd x Tb 1–x alloys as magnetic materials where the composition of the alloy varies for different stages. In this model, the heat transfer fluid considered is a water– glycol mixture (50% by weight). The refrigeration capacity, total power consumption, coefficients of performance (COP), exergy efficiency and exergy destruction rate of a cascade AMR refrigeration (AMRR) system are determined. To understand the system performance more comprehensively, a parametric study is performed to investigate the effects of several important design parameters on COP and exergy efficiency of the system.


2013 ◽  
Vol 860-863 ◽  
pp. 639-644
Author(s):  
Jian Gang Wang ◽  
Pu Yan Zheng ◽  
Zhi Yun Zhou ◽  
Yan Zhou Yuan

Power generation using waste heat from cement kiln can not only bring economic benefits to the enterprise, but also play an important role in environment protection. Constantly researches have proved that there is still large energy saving potential in its operation. In this paper, the waste heat power generation system was divided into several subsystems, and the exergy calculation model of each subsystem unit was established. Finally, the weakest part in energy use was found according to the results. It provides a scientific basis for performance improvement and energy saving transformation of waste heat power generation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuai Du

Ammonia water absorption refrigeration systems are effective in utilizing fishing-boat exhaust waste heat for cryopreservation. However, the liquid level control and the use of a solution pump characterized by small flowrate and high-pressure head result in poor reliability in the traditional system. Besides, the system must necessarily be designed anti-swaying and anti-corrosion. This paper proposes a forced flow diffusion absorption refrigeration system, in which an inherently leak-free canned motor pump and an ejector are employed to provide the driving forces of the gas and liquid loops. The approximate single pressure operation allows for a simple passive liquid sealing control without throttling valves. The system adopts an integrated cooling strategy which allows the system to operate under swaying conditions, and the external seawater cooled heat exchanger avoids internal corrosion and leakage. The thermal analysis shows the system is valid to be operated under wide operating conditions, and the coupled gas and solution circulation ratios determined the performance of the novel system. There is an optimal ammonia mass fraction difference in the gas loop to obtain the optimal COP. The COP reaches 0.4 when the temperatures at the outlets of the generator, evaporator, absorber, and condenser are 160, −15, 35, and 35°C, respectively. The novel system provides a reliable absorption refrigeration system design for fishing-boat applications.


2020 ◽  
Author(s):  
Li Zhao ◽  
Wei Chen ◽  
Qiong Li ◽  
WeiWei Wu

Abstract Clean energy substitution technology of existing residential buildings in cities is an inevitable choice for sustainable development and low-carbon ecological city construction. In this paper, the current status of energy-saving renovation and renewable energy application of existing residential buildings in various cities in China is summarized by using statistical analysis method. According to different climatic zones of existing urban areas, the production and consumption of conventional energy (e.g. electricity, gas) and new energy (e.g. solar energy and air energy) are analyzed, and the energy consumption of buildings in existing urban residential areas is analyzed based on STIRPAT model principle. The influencing factors are modeled and analyzed quantitatively. The function relationship between energy consumption of existing residential buildings and influencing factors is analyzed by Ridge Regression with R software. The research results show that the areas with energy-saving modification area of existing buildings in China exceeding 10 million m2 by 2018 include: Xinjiang, Inner Mongolia and Shandong Province; based on data analysis of 2015-2017 in China with different climatic zones, the nuclear power generation capacity in hot summer and warm winter areas is ahead of other areas and the power generation capacity is increasing year by year; the wind power and solar power generation capacity in cold areas and cold areas is comparable. Strong and power generation also increases year by year; the proportion of clean energy generation in total power generation in each region is still small; the annual power generation of clean energy in each region is positively related to the total power generation. Based on STIRPAT model analysis, compared with 2009, urban residential energy consumption increased by 43.6% in 2016.Natural gas-based clean energy has also increased from 7.9% to 13.4%.But still cannot meet the demand of energy consumption of urban residential. The research results can provide basic data support for planning and implementation of clean energy upgrading and transformation system in existing urban residential areas in China.


Author(s):  
Masoud Rashidi ◽  
Ahmad Sedaghat ◽  
Biltayib Misbah ◽  
Mohammad Sabati ◽  
Koshy Vaidyan ◽  
...  

AbstractPower consumption of wellbore drilling in oil and gas exploitations count for 40% of total costs, hence power saving of WBM (water-based mud) by adding different concentrations of Al2O3, TiO2 and SiO2 nanoparticles is investigated here. A high-speed Taylor–Couette system (TCS) was devised to operate at speeds 0–1600 RPM to simulate power consumption of wellbore drilling using nanofluids in laminar to turbulent flow conditions. The TCS control unit uses several sensors to record current, voltage and rotational speed and Arduino microprocessors to process outputs including rheological properties and power consumption. Total power consumption of the TCS was correlated with a second-order polynomial function of rotational speed for different nanofluids, and the correlated parameters were found using an optimization technique. For the first time, energy saving of three nanofluids at four low volume concentrations 0.05, 0.1, 0.5 and 1% is investigated in the TCS simulating wellbore drilling operation. It is interesting to observe that the lower concentration nanofluids (0.05%) have better power savings. In average, for the lower concentration nanofluids (0.05%), power was saved by 39%, 30% and 26% for TiO2, Al2O3 and SiO2 WBM nanofluids, respectively. TiO2 nanofluids have better power saving at lower concentrations of 0.05 and 0.1%, while Al2O3 nanofluids have saved more power at higher concentrations of 0.5 and 1.0% compared with their counterpart nanofluids.


Sign in / Sign up

Export Citation Format

Share Document