scholarly journals Analysis of suspension bridge tunnel-type anchorage construction on the stability of surrounding rock

2020 ◽  
Vol 198 ◽  
pp. 02006
Author(s):  
Nana Li ◽  
Yongqiang Zhou ◽  
Yanqiang Zhao ◽  
Guiju Li

In order to study the interaction between the left and right tunnels of suspension bridge tunnel-type anchorage, the finite difference numerical software is used to analyze the mechanical properties of the surrounding rock during the construction process. A numerical analysis model based on FLAC3D is established to analyze the stress, displacement and plastic zone changes of the surrounding rock of right tunnel anchor cavern during the construction of left tunnel anchor cavern. The right tunnel anchor cavern is excavated firstly, and then the left tunnel anchor cavern is excavated. The numerical simulation results show that the main displacement of the right tunnel occurs in the construction stage of the anchor plug body and the rear anchor cavern of the left tunnel. During the excavation of the left tunnel, the plastic zones of the left and right tunnel anchor caverns are only connected above the middle of the waist wall. Therefore, it is suggested that during the construction process, especially in the excavation stage of the anchor plug body and the rear anchor cavern, the area above the middle of the tunnel waist wall should be strengthened in time to ensure the construction safety.

2020 ◽  
Vol 12 (1) ◽  
pp. 168781401989696 ◽  
Author(s):  
Zhanping Song ◽  
Guilin Shi ◽  
Baoyun Zhao ◽  
Keming Zhao ◽  
Junbao Wang

The deformation and significant settlement of surrounding rock often occur during tunnel construction with the condition of abundant water and weak cementing sand. In order to study the construction method and stability under such soft stratum, this article takes Taoshuping tunnel as the engineering background and puts forward a new tunnel construction method—double-heading advance construction method by comparing the advantages and disadvantages of various traditional construction schemes. The numerical simulation of tunnel construction process using this method is carried out to illustrate the rationality and feasibility of the method. The conclusions are drawn by comparing the numerical simulation results with the field monitoring data analysis. The numerical simulation results show that the maximum settlement value caused by excavation construction is in the parts 5 and 6 of the upper half-section and the part 7 of the central section. The settlement values of parts 5, 6, and 7 accounted for 32.4%, 24.3%, and 18.9% of the total settlement values, respectively. So, the supporting measures for double-heading advance excavation construction of these three parts should be strengthened properly. The stress of the right hance changes greatly before and after the demolition of temporary support. The maximum positive value of stress is 23 kPa and the maximum negative value of stress is −32 kPa. Therefore, the length of temporary bracing should be strictly controlled during construction and the monitoring of the right hance area should be strengthened. Furthermore, it is necessary to strengthen the supporting measures and monitoring in the right spandrel area as the surrounding rock pressure in the right spandrel area is higher than the left spandrel area. The optimum excavation height of the upper half-section in Taoshuping tunnel is determined to be 5.4 m and the reasonable excavation distance between parts 1 and 5 is determined to be 25–30 m by parameter optimization. Finally, the variation law of numerical simulation and field monitoring results is consistent, which shows that the double-heading advance construction method has a better effect on the stability control of surrounding rock, and the rationality and feasibility of this method are validated effectively. Therefore, the double-heading advance method is suitable for tunnel construction in the sand stratum with rich water and weak cementation, and the successful implementation of this method in Taoshuping tunnel also provides a reference for subsequent tunnel construction in the sand stratum with rich water and weak cementation.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2013 ◽  
Vol 671-674 ◽  
pp. 230-234
Author(s):  
Yu Jun Zuo ◽  
De Kang Zhu ◽  
Wan Cheng Zhu

In order to study the supporting of deep surrounding rock with zonal disintegration tendency, the zonal disintegration phenomenon of deep surrounding rock under three supporting forms is analyzed by the ABAQUS finite element software in this paper, and three supporting forms are un-supporting, bolting and grouting, and combined “Bolting and grouting plus Anchor rope” supporting. The results show that the different effects to zonal disintegration under different supporting forms will occur. Supporting can help to restrain the zonal disintegration of the reinforcement part advantageously, and also lower rupture degree of zonal disintegration and reduce the size of rupture zone. Meanwhile, the stability of surrounding rock is improved. But zonal disintegration may occur outside reinforcement part under greater ground stress. The results are great importance to a better understanding of the deep roadway supporting.


2019 ◽  
Vol 9 (13) ◽  
pp. 2588 ◽  
Author(s):  
Jing Wang ◽  
Liping Li ◽  
Shaoshuai Shi ◽  
Shangqu Sun ◽  
Xingzhi Ba ◽  
...  

A large number of subway projects need to cross all kinds of disaster sources during the construction process. When a disaster source is unknown and uncertain, it is difficult for tunnel stability analysis to conform to the actual situation, which is likely to cause serious geological disasters. Firstly, the accurate location of the source of the disaster is realized via the geophysical method, and the orientation of the target is determined. Secondly, real imaging of the geological disaster source is realized using fine three-dimensional scanning equipment. Finally, the coupling law of the seepage field, displacement field, and stress field of the tunnel surrounding rock are analyzed. The stability of the tunnel is analyzed, and the reasonable karst treatment method is put forward.


2012 ◽  
Vol 170-173 ◽  
pp. 502-505
Author(s):  
Li Guo ◽  
Bing Xie

The cut-and-fill mining is the main content of the technical system of green coal mining. And it is an effective way for solving the environmental problems and mining the coal under buildings, under railway, under water and over confined aquifer. No matter what kind of filling way, the gob stowing cannot achieve ideal filling effect, the filling effect is random in certain scope. Taking a coal mine as an example, with the aid of stochastic finite element method, the three situations of gob stowing were calculated and analyzed to explore the statistical rule of the ground surface settlement and the stability of surrounding rock because of random variation of gob stowing effect.


2014 ◽  
Vol 580-583 ◽  
pp. 1321-1326
Author(s):  
Rui Wang ◽  
Yan Liang ◽  
Wei Qin

The use of the Analysis and calculation with elastic-plastic theory and Deep displacement of surrounding rock measurement determine the distribution range on broken zone of surrounding rock in Cha Zhen tunnel ; it verifies The stability of surrounding rock and the design rationality of bolting parameters ;Providing a theoretical base for the setting on broken zone of surrounding rock supporting parameters.


2010 ◽  
Vol 163-167 ◽  
pp. 3320-3323
Author(s):  
Min Yong ◽  
Wei Shen Zhu ◽  
Da Jun Yu ◽  
Li Ge Wang

The reasonable selection of a location for underground structures has a great influence on the stability of surrounding rock masses, especially when the construction is built in the alpine and gorge regions. In general, the higher and steeper the mountains are, the more significant the effect is. In this paper, numerical analysis was carried out to study the stress distribution characters in the mountain with different slope angles of 30 °, 45 ° and 60 °. The results show that, the initial vertical component of stress field can not be directly determined by the buried depth when the slope angle is greater than 30 °. Meanwhile, numerical results indicate that is unfavorable for the structural stability when the underground caverns are constructed in the stress concentration areas of mountains with high slope angle. Moreover, some conclusions and recommendations were proposed for the design of underground constructions.


2016 ◽  
Vol 858 ◽  
pp. 81-85
Author(s):  
Lin Liu ◽  
Yao Rong ◽  
Cheng Ke Zhang ◽  
Meng Yun Mao ◽  
Lu Lin Zhang

The stability of the tunnel portal section under poor terrain and geological condition has always been the focus of construction safety. The stability problem has become more complex for the erosion accumulation area under the valley. In this paper, firstly the stability of the tunnel portal is classified. Combined with engineering cases, the FEM numerical method is used to simulate the supporting structure and construction process of the tunnel. Based on the distribution of the plastic zone and displacement of surrounding rock, the mechanism of the instability of the tunnel portal is analyzed. Through the optimized construction scheme that arranges pile foundation in tunnel arch foundation, the bearing capacity of foundation has been greatly improved, which has effectively prevented the instability of surrounding rock caused by the slope deformation and foundation settlement. The conclusions that have been drawn in this paper can be used for reference for related projects.


2013 ◽  
Vol 790 ◽  
pp. 299-305
Author(s):  
Xiao Song Tang ◽  
Yong Fu Wang ◽  
Ying Ren Zheng

The paper adopts the interface element to simulate the joints so as to systematically and quantitatively study the deformation around tunnel, the mechanic state of lining and the stability under different inclining angles of joints. The result shows that the deformation around tunnel deteriorates mainly along the joint during the inner convergence effects of surrounding rock. When the inclining angle α=45°, the deformation around the tunnel is most serious, followed by that when α=90°, α=60°, α=30° and α=0°. At the same time, the influence of inclining angle on the distribution of the axial force of lining is comparatively small. But the distribution of bending moment and shear change obviously where the joints penetrate the tunnel. The tunnel stability of surrounding rock is the poorest when α=90° and the tunnel is most stable when α=0°. The stability of surrounding rock changes little when α is between 30° and 60°. The research result provides an effective calculation method for the forecast of deformation, the design of structure and the stability analysis of jointed tunnel. It is also helpful for the monitoring of construction and calculation of jointed tunnel in the future.


Sign in / Sign up

Export Citation Format

Share Document