Study on the Stochastic Law of Gob Stowing Effect

2012 ◽  
Vol 170-173 ◽  
pp. 502-505
Author(s):  
Li Guo ◽  
Bing Xie

The cut-and-fill mining is the main content of the technical system of green coal mining. And it is an effective way for solving the environmental problems and mining the coal under buildings, under railway, under water and over confined aquifer. No matter what kind of filling way, the gob stowing cannot achieve ideal filling effect, the filling effect is random in certain scope. Taking a coal mine as an example, with the aid of stochastic finite element method, the three situations of gob stowing were calculated and analyzed to explore the statistical rule of the ground surface settlement and the stability of surrounding rock because of random variation of gob stowing effect.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhi Lin ◽  
Xiang Chen ◽  
Hongyun Yang ◽  
Chongguo Cheng ◽  
Huasong Wang ◽  
...  

The construction of urban underground cross-interchange transfer subway stations often encounters the difficulties of shallow-buried, different surrounding rock, large spans and heights, congested road traffic, and surrounding buildings sensitive to the construction sequence. Therefore, there is a need for an underground project that controls the stability of underground space and ground subsidence. Based on the construction difficulties of a certain station (the maximum excavation area over 760 m2), this paper conducts a comprehensive selection design of the structure, construction mechanics response, and control technology of this type of interchange station structure and construction excavation. First of all, based on the design experience of large-scale underground transfer transportation engineering and taking full consideration of the stratum conditions, an “arch-wall” cross transfer structure method is proposed. The refined numerical analysis shows that the structure can fully utilize the stratum conditions to reduce the ground surface settlement. Then, in view of the stability of surrounding rock during the construction of a large section, based on the traditional large section excavation method, a construction method of “cross rock beam + heading method” was proposed. In order to verify the effect of the construction method, the three-dimensional detailed numerical model was used to simulate the construction conditions, and the mechanical response characteristics and displacement changes of surrounding rock under each excavation step are explored. Simultaneous interpreting with the traditional large section excavation method, the results show that the new method has advantages in controlling the stability of the surrounding rock. Meanwhile, in order to ensure the safe construction of the project, the self-developed multifunctional engineering test system for traffic tunnels is used to carry out a large-scale physical model experiment to simulate the entire process of the “arch-wall” cross transfer structure construction response characteristics. By analyzing the data of measuring points, the results show that the structure form and the excavation method cause the ground surface settlement, stress, and structural forces meet the requirements for safe construction. Finally, the station can be safely constructed under the new structure form and construction method. Therefore, the structure form and method proposed in this paper can be adapted to the large-scale underground structure under construction in complex environments.


2011 ◽  
Vol 255-260 ◽  
pp. 1926-1929
Author(s):  
Da Kun Shi ◽  
Yang Song Zhang

Based on geologic condition of one tunnel surrounding rock mass, systematic numerical tests had been carried out to study the stability of surrounding rock mass with different distributions of weak intercalated rock by the FEM software ABAQUS and strength reduction finite element method. Some quantificational results about the stability of surrounding rock mass were summarized. And the safety factor and latent slip surface were worked out. The stability of surrounding rock mass was judged by strength reduction finite element method. According to the analysis above, it’s known that the discrepancy of two rules is small; the safety factor is the lowest when weak intercalated rock in vault, and when at bottom, it’s higher than that of in vault. The conclusion can be used to guide the procedure of construction and ensure the safety.


2011 ◽  
Vol 250-253 ◽  
pp. 1418-1421
Author(s):  
Le Min Ma ◽  
Lei Wang ◽  
Long Xian Xu

Through studying the ground surface settlement monitoring for Fang Dou Shan highway tunnel Shallowly-buried Portal Part, this paper mainly discusses the deformation of surrounding rock range from ground surface to the arch crown of double-line tunnel, and analyses the effect on stability of surrounding rock during construction, with the whole process of excavation of highway tunnel being simulated by FLAC_3D. It can make great significance for construction safety and some other related parts.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2020 ◽  
Vol 198 ◽  
pp. 02006
Author(s):  
Nana Li ◽  
Yongqiang Zhou ◽  
Yanqiang Zhao ◽  
Guiju Li

In order to study the interaction between the left and right tunnels of suspension bridge tunnel-type anchorage, the finite difference numerical software is used to analyze the mechanical properties of the surrounding rock during the construction process. A numerical analysis model based on FLAC3D is established to analyze the stress, displacement and plastic zone changes of the surrounding rock of right tunnel anchor cavern during the construction of left tunnel anchor cavern. The right tunnel anchor cavern is excavated firstly, and then the left tunnel anchor cavern is excavated. The numerical simulation results show that the main displacement of the right tunnel occurs in the construction stage of the anchor plug body and the rear anchor cavern of the left tunnel. During the excavation of the left tunnel, the plastic zones of the left and right tunnel anchor caverns are only connected above the middle of the waist wall. Therefore, it is suggested that during the construction process, especially in the excavation stage of the anchor plug body and the rear anchor cavern, the area above the middle of the tunnel waist wall should be strengthened in time to ensure the construction safety.


2013 ◽  
Vol 671-674 ◽  
pp. 230-234
Author(s):  
Yu Jun Zuo ◽  
De Kang Zhu ◽  
Wan Cheng Zhu

In order to study the supporting of deep surrounding rock with zonal disintegration tendency, the zonal disintegration phenomenon of deep surrounding rock under three supporting forms is analyzed by the ABAQUS finite element software in this paper, and three supporting forms are un-supporting, bolting and grouting, and combined “Bolting and grouting plus Anchor rope” supporting. The results show that the different effects to zonal disintegration under different supporting forms will occur. Supporting can help to restrain the zonal disintegration of the reinforcement part advantageously, and also lower rupture degree of zonal disintegration and reduce the size of rupture zone. Meanwhile, the stability of surrounding rock is improved. But zonal disintegration may occur outside reinforcement part under greater ground stress. The results are great importance to a better understanding of the deep roadway supporting.


2014 ◽  
Vol 580-583 ◽  
pp. 1321-1326
Author(s):  
Rui Wang ◽  
Yan Liang ◽  
Wei Qin

The use of the Analysis and calculation with elastic-plastic theory and Deep displacement of surrounding rock measurement determine the distribution range on broken zone of surrounding rock in Cha Zhen tunnel ; it verifies The stability of surrounding rock and the design rationality of bolting parameters ;Providing a theoretical base for the setting on broken zone of surrounding rock supporting parameters.


2010 ◽  
Vol 163-167 ◽  
pp. 3320-3323
Author(s):  
Min Yong ◽  
Wei Shen Zhu ◽  
Da Jun Yu ◽  
Li Ge Wang

The reasonable selection of a location for underground structures has a great influence on the stability of surrounding rock masses, especially when the construction is built in the alpine and gorge regions. In general, the higher and steeper the mountains are, the more significant the effect is. In this paper, numerical analysis was carried out to study the stress distribution characters in the mountain with different slope angles of 30 °, 45 ° and 60 °. The results show that, the initial vertical component of stress field can not be directly determined by the buried depth when the slope angle is greater than 30 °. Meanwhile, numerical results indicate that is unfavorable for the structural stability when the underground caverns are constructed in the stress concentration areas of mountains with high slope angle. Moreover, some conclusions and recommendations were proposed for the design of underground constructions.


2013 ◽  
Vol 790 ◽  
pp. 299-305
Author(s):  
Xiao Song Tang ◽  
Yong Fu Wang ◽  
Ying Ren Zheng

The paper adopts the interface element to simulate the joints so as to systematically and quantitatively study the deformation around tunnel, the mechanic state of lining and the stability under different inclining angles of joints. The result shows that the deformation around tunnel deteriorates mainly along the joint during the inner convergence effects of surrounding rock. When the inclining angle α=45°, the deformation around the tunnel is most serious, followed by that when α=90°, α=60°, α=30° and α=0°. At the same time, the influence of inclining angle on the distribution of the axial force of lining is comparatively small. But the distribution of bending moment and shear change obviously where the joints penetrate the tunnel. The tunnel stability of surrounding rock is the poorest when α=90° and the tunnel is most stable when α=0°. The stability of surrounding rock changes little when α is between 30° and 60°. The research result provides an effective calculation method for the forecast of deformation, the design of structure and the stability analysis of jointed tunnel. It is also helpful for the monitoring of construction and calculation of jointed tunnel in the future.


Sign in / Sign up

Export Citation Format

Share Document