scholarly journals Exposure and loss assessment of soil liquefaction in coastal area of Kulon Progo, Indonesia

2020 ◽  
Vol 200 ◽  
pp. 02008
Author(s):  
Ghiffari Rizki ◽  
Rachmawati Rini ◽  
Rijanta Raden

Soil Liquefaction is a phenomenon of loss of strength of the granural soil layers due to increased pore water stress caused by earthquake shocks. Soil liquefaction can cause material and life damage if occurs in the developed area. Kulon Progo Regency based on the Atlas of Liquefaction Susceptibility Zones in 2019, has high susceptibility zones, which has the potential for flow liquefaction, lateral spreading, vertical displacement, and sand boil. This study aims to assess the exposure and loss index in liquefaction hazard zone based on the characteristics of land use and social demographic. The exposure index is obtained from overlaying between susceptibility map and liquefaction exposure variables, when the loss assessment is done by simulating the losses in several earthquake moment magnitude scenarios. Study results show that high exposure surrounding the residential zone in the south of the Wates Urban Area and the construction location of the Yogyakarta International Airport. There are settlement areas potentially affected by lateral spreading in Glagah, Karangwuni, Banaran, and Karangsewu Villages. While the results of the loss assessment show that transport infrastructure and residential buildings are the most affected objects when liquefaction phenomena occur due to the earthquake. Managing the expansion of settlement area through zoning regulation and technical engineering approach is needed to reduce losses due to future liquefaction phenomenon.

2018 ◽  
Vol 13 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Keshab Sharma ◽  
Mandip Subedi ◽  
Indra Prasad Acharya ◽  
Bigul Pokharel

 An earthquake of moment magnitude (Mw ) 7.8 struck the central Nepal at 11:56 am on April 25, 2015. More than 9,000 people were killed and thousands of residential buildings, and hundreds other structures were also destroyed. An aftershock of moment magnitude (Mw ) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock which caused additional damages. Immediately after the earthquake, authors undertook a field investigation and visited the affected areas. Strong motion records from both earthquakes and their impacts on structures as well as geotechnical issues are presented in this paper. Most of the structures in Nepal are made of adobe, unreinforced masonry, and reinforced concrete. Failure mechanisms of those buildings are briefly explained in this paper. Geotechnical aspects such as soil liquefaction, slope failures, settlement and lateral spreading, and site amplification effects that considerably influenced the damage patterns at many areas are briefly discussed as well. The lessons learnt from this earthquake are also summarized in this paper.Journal of the Institute of Engineering, 2017, 13(1): 20-36


2021 ◽  
Vol 10 (3) ◽  
pp. 119
Author(s):  
Hakan A. Nefeslioglu ◽  
Beste Tavus ◽  
Melahat Er ◽  
Gamze Ertugrul ◽  
Aybuke Ozdemir ◽  
...  

Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019–2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions.


2008 ◽  
Vol 24 (2) ◽  
pp. 343-386 ◽  
Author(s):  
Yuyi Zhang ◽  
Joel P. Conte ◽  
Zhaohui Yang ◽  
Ahmed Elgamal ◽  
Jacobo Bielak ◽  
...  

This paper presents a two-dimensional advanced nonlinear FE model of an actual bridge, the Humboldt Bay Middle Channel (HBMC) Bridge, and its response to seismic input motions. This computational model is developed in the new structural analysis software framework OpenSees. The foundation soil is included to incorporate soil-foundation-structure interaction effects. Realistic nonlinear constitutive models for cyclic loading are used for the structural (concrete and reinforcing steel) and soil materials. The materials in the various soil layers are modeled using multi-yield-surface plasticity models incorporating liquefaction effects. Lysmer-type absorbing/transmitting boundaries are employed to avoid spurious wave reflections along the boundaries of the computational soil domain. Both procedures and results of earthquake response analysis are presented. The simulation results indicate that the earthquake response of the bridge is significantly affected by inelastic deformations of the supporting soil medium due to lateral spreading induced by soil liquefaction.


Author(s):  
Martin Zaleski ◽  
Gerald Ferris ◽  
Alex Baumgard

Earthquake hazard management for oil and gas pipelines should include both preparedness and response. The typical approach for management of seismic hazards for pipelines is to determine where large ground motions are frequently expected, and apply mitigation to those pipeline segments. The approach presented in this paper supplements the typical approach but focuses on what to do, and where to do it, just after an earthquake happens. In other words, we ask and answer: “Is the earthquake we just had important?”, “What pipeline is and what sites might it be important for?”, and “What should we do?” In general, modern, high-pressure oil and gas pipelines resist the direct effects of strong shaking, but are vulnerable to large co-seismic differential permanent ground displacement (PGD) produced by surface fault rupture, landslides, soil liquefaction, or lateral spreading. The approach used in this paper employs empirical relationships between earthquake magnitude, distance, and the occurrence of PGD, derived from co-seismic PGD case-history data, to prioritize affected pipeline segments for detailed site-specific hazard assessments, pre-event resiliency upgrades, and post-event response. To help pipeline operators prepare for earthquakes, pipeline networks are mapped with respect to earthquake probability and co-seismic PGD susceptibility. Geological and terrain analyses identify pipeline segments that cross PGD-susceptible ground. Probabilistic seismic models and deterministic scenarios are considered in estimating the frequency of sufficiently large and close causative earthquakes. Pipeline segments are prioritized where strong earthquakes are frequent and ground is susceptible to co-seismic PGD. These may be short-listed for mitigation that either reduces the pipeline’s vulnerability to damage or limits failure consequences. When an earthquake occurs, pipeline segments with credible PGD potential are highlighted within minutes of an earthquake’s occurrence. These assessments occur in near-real-time as part of an online geohazard management database. The system collects magnitude and location data from online earthquake data feeds and intersects them against pipeline network and terrain hazard map data. Pipeline operators can quickly mobilize inspection and response resources to a focused area of concern.


Children ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 709
Author(s):  
Sarah Nelson ◽  
Samantha Bento ◽  
Michelle Bosquet Enlow

Pediatric chronic pain is common and responsible for significant healthcare burden. However, the mechanisms underlying the development and/or maintenance of pediatric chronic pain remain poorly understood. Allostatic load (AL), or wear and tear on the nervous system following significant or prolonged stress, has been proposed to play a role in the maintenance of chronic pain, but minimal research has examined this possibility. This gap in research is particularly notable given the high exposure to adverse childhood experiences (ACEs; abuse/neglect, etc.) and psychological stress in this population. Accordingly, the current study aimed to preliminarily examine the measurement of AL in a treatment-seeking pediatric pain population. Biomarkers were collected during an already scheduled new patient pain evaluation and included salivary cortisol, dehydroepiandrosterone (DHEA), and C-reactive protein, in addition to waist–hip ratio, body-mass index, and blood pressure. A total of 61 children and adolescents with chronic pain (Mage = 14.47 years; 88.5% female and white/Caucasian) completed study procedures and were included in analyses. Preliminary results indicated that a multifactorial AL composite is feasible to assess for in a tertiary pain treatment setting and that over 50% of youth with chronic pain were classified as high risk for AL (two or more risk factors). Further, it was found that individual AL risk factors were significantly associated with functional disability and that AL may moderate the association between psychosocial and functional outcomes. Given the pilot nature of this study, results should be used to inform future investigations with larger and more diverse pediatric pain samples.


2001 ◽  
Vol 34 (4) ◽  
pp. 1405
Author(s):  
Γ. Δ. ΔΑΝΑΜΟΣ ◽  
Ε. Λ. ΛΕΚΚΑΣ ◽  
Σ. Γ. ΛΟΖΙΟΣ

The Jan. 26, 2001, Ms=7.7 earthquake occurred in Gujarat region of W. India, which lies 200-400 Km away from the active plate boundary zone, between the Indian subcontinent and the Asian plate, along the India-Pakistan border and the Himalayan belt. An Ms=7.7±0.2 earthquake also occurred in the same region in 1819. A zone of co-seismic E-W surface ruptures, 30-40 Km long and 15-20 Km wide, observed near the epicentral area and seems to be associated with pre-existing reverse faults and thrust folds, which were partially reactivated during the recent earthquake. Except the reverse vertical displacement a significant right lateral displacement was also observed along these E-W surface ruptures. This Ms=7.7 seismic event has been also accompanied by a large scale flexural-slip folding, as the absence of significant co-seismic fault displacement and fault scarp shows. This type of compressional tectonic deformation is also confirmed by the focal mechanism of the earthquake and the seismo-tectonic "history" of the area. The NW-SE open cracks, also observed along the same zone, are associated with the right lateral horizontal displacement of the reactivated fault (or branch faults) and the development of local extensional stress field in the huge anticlinic hinges of the co-seismic flexural-slip folds. A large number of ground ruptures, failures and open cracks are also associated with extensive sand boils, liquefaction phenomena and lateral spreading.


Sign in / Sign up

Export Citation Format

Share Document