scholarly journals A comparison of regularized, sharp boundary and tear zone inversions along an MT profile in Sabalan geothermal field, Iran

2020 ◽  
Vol 211 ◽  
pp. 02004
Author(s):  
Mansoure Montahaei ◽  
Saeid Ghanbarifar

This paper investigates magnetotelluric (MT) data recorded along a profile in the Sabalan geothermal region, NW of Iran. To find the range of relevant models consistent with the data, this study employed the so-called regularized, tear zone, and sharp boundary inversions. This study could effectively derive three alternative classes of models. Although the models show stable common resistive and conductive features there are some inconsistent details. Unaltered surface rocks and porous Basalt exhibit a high resistive overburden underlain by relatively more conductive Paleozoic sediments. A common signature of hydrothermal systems appears, and resistivities increase beneath a highly conductive clay cap in deeper parts. An intriguing feature resolved in the smoothest inversion model is a second deep conductor of 30 Ωm resistivities at a depth of 3 km, extending close to the surface. It can be related to the hot, solidified volcanic intrusions, resemblingthe heat source in a geothermal system. This study applied the two other inversion approaches for further hypothesis tests. Although the tear zone inversion re-establish the deep conductor (with 38 Ωm resistivities at 3 km depth), it is absent in the sharp boundary inversion result. This study concludes that the second deep conductor has a limited structure resolution.

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Fan ◽  
Pang ◽  
Liao ◽  
Tian ◽  
Hao ◽  
...  

The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.


2017 ◽  
Vol 5 (2) ◽  
pp. T219-T230 ◽  
Author(s):  
Paulo T. L. Menezes ◽  
Jandyr M. Travassos ◽  
Adriano J. A. Marçal ◽  
Fernando A. Monteiro Santos

Geothermal energy accounts for 43% of the electricity expenditure of São Miguel Island, Azores Archipelago. All production comes from the Ribeira Grande (RG) high-enthalpy geothermal field. To meet the growing energy demand in the island, it is necessary to extend the exploration efforts to new areas. We evaluated the results of a broadband magnetotelluric reconnaissance survey conducted at Sete Cidades Volcano, placed only 30 km westward of the RG field. The resistivity structure of the Sete Cidades geothermal system was obtained through a simultaneous 3D inversion of the full impedance tensor and tipper. The bathymetry and the topography of the island were treated as fixed features in the model. The geothermal reservoir at Sete Cidades is outlined as a northwest–southeast elongated resistive anomaly, geologically controlled by the Terceira Rift fracture zone. We have also identified high-conductivity zones between 1000 and 4000 m below mean sea level, probably associated with clay cap rocks overlying the geothermal reservoir.


2020 ◽  
Author(s):  
Florian Schäfer ◽  
Philippe Jousset ◽  
Tania Toledo ◽  
Andreas Güntner ◽  
Tilo Schöne ◽  
...  

<p> <span>In volcanic and hydrothermal systems, monitoring of mass and stress changes by continuous gravity field and ground motion records provides information for both volcanic hazard assessment and estimation of geothermal resources. We aim at a better understanding of volcanic and geothermal system processes by addressing mass changes in relation with external influences such as anthropogenic (reservoir exploitation) and natural forcing (local and regional earthquake activity, earth tides). Þeistareykir is a geothermal field located within the Northern Volcanic Zone (NVZ) of Iceland on the Mid-Atlantic Ridge. Geothermal power production started in autumn 2017. For the first time on a geothermal production field, we deployed a network of 4 continuously recording gravity meters (3 superconducting meter, iGrav and one spring gravity meter gPhone) in order to cover the spatial and the temporal changes of gravity and to detect small variations related to the geothermal power plant operation (e.g. extraction and injection). All gravity monitoring stations are equipped with additional instrumentation to measure parameters that may affect the gravity records (e.g. GNSS and hydrometeorological sensors). Additionally, we deployed a temporal seismic network consisting of 14 broadband stations to enhance the seismic activity monitoring of the permanent Icelandic network in this very active region of the NVZ. Results of this unique experiment contribute to determine reservoir properties and main structures and may also reveal details of active tectonic processes. Here, we present the instrumental setup at the site and first results of more than 24 months of continuous gravity and seismicity records.</span></p>


Clay Minerals ◽  
2018 ◽  
Vol 53 (2) ◽  
pp. 117-141 ◽  
Author(s):  
S.N. Maza ◽  
G. Collo ◽  
D. Morata ◽  
C. Lizana ◽  
E. Camus ◽  
...  

ABSTRACTThe occurrence of smectite-illite and smectite-chlorite minerals series was studied along a thick clay cap (~300 m) drilled in the Cerro Pabellón geothermal field (northern Andes, Chile). X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to characterize the alteration mineralogy and clay mineral assemblages and their changes with depth. Cerro Pabellón is a high-enthalpy blind geothermal system, with a reservoir zone from ~500 m to 2000 m depth, with temperatures of 200–250°C. Three main hydrothermal alteration zones were identified: (1) argillic; (2) sub-propylitic, and (3) propylitic, with variable amounts of smectite, illite-smectite, chlorite-smectite, mixed-layer chlorite-corrensite, illite and chlorite appearing in the groundmass and filling amygdales and veinlets. Chemical and XRD data of smectites, I-S and illites show, with some exceptions, a progressive illitization with depth. The evolution of I-S with depth, shows a sigmoidal variation in the percentage of illite layers, with the conversion of smectite to R1 I-S at ~180–185°C. These temperatures are greater than those reported for other similar geothermal fields and might indicate, at least in part, the efficiency of the clay cap in terms of restricting the circulation of hydrothermal fluids in low-permeability rocks. Our results highlight the importance of a better understanding of clay-mineral evolution in active geothermal systems, not only as a direct (or indirect) way to control temperature evolution, but also as a control on permeability/porosity efficiency of the clay cap.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2473
Author(s):  
Yujiang He ◽  
Xianbiao Bu

The energy reserves in hot dry rock and hydrothermal systems are abundant in China, however, the developed resources are far below the potential estimates due to immature technology of enhanced geothermal system (EGS) and scattered resources of hydrothermal systems. To circumvent these problems and reduce the thermal resistance of rocks, here a shallow depth enhanced geothermal system (SDEGS) is proposed, which can be implemented by fracturing the hydrothermal system. We find that, the service life for SDEGS is 14 years with heat output of 4521.1 kW. To extend service life, the hybrid SDEGS and solar energy heating system is proposed with 10,000 m2 solar collectors installed to store heat into geothermal reservoir. The service life of the hybrid heating system is 35 years with geothermal heat output of 4653.78 kW. The novelty of the present work is that the hybrid heating system can solve the unstable and discontinuous problems of solar energy without building additional back-up sources or seasonal storage equipment, and the geothermal thermal output can be adjusted easily to meet the demand of building thermal loads varying with outside temperature.


2018 ◽  
Vol 37 (2) ◽  
pp. 626-645
Author(s):  
Wei Zhang ◽  
Guiling Wang ◽  
Linxiao Xing ◽  
Tingxin Li ◽  
Jiayi Zhao

The geochemical characteristics of geothermically heated water can reveal deep geothermal processes, leading to a better understanding of geothermal system genesis and providing guidance for improved development and utilization of such resources. Hydrochemical and hydrogen oxygen isotope analysis of two geothermal field (district) hot springs based on regional geothermal conditions revealed that the thermal water in the Litang region is primarily of the HCO3Na type. The positive correlations found between F−, Li2+, As+, and Cl− indicated a common origin, and the relatively high Na+ and metaboric acid concentrations suggested a relatively long groundwater recharge time and a slow flow rate. The values of δD and δ18O were well distributed along the local meteoric line, indicating a groundwater recharge essentially driven by precipitation. The thermal reservoir temperature (152°C–195°C) and thermal cycle depth (3156–4070 m) were calculated, and the cold water mixing ratio (60%–68%) was obtained using the silica-enthalpy model. Finally, hydrogeochemical pathway simulation was used to analyze the evolution of geothermal water in the region. The results were further supported by the high metasilicate content in the region. Of the geothermal fields in the region, it was found that the Kahui is primarily affected by albite, calcite precipitation, and silicate, while the Gezha field is primarily affected by calcite dissolution, dolomite precipitation, and silicate.


Sign in / Sign up

Export Citation Format

Share Document