scholarly journals Study on the Influence of fly ash, mineral powder and silicon powder on the performance of high-performance concrete

2021 ◽  
Vol 237 ◽  
pp. 03018
Author(s):  
Hua-Quan Yang ◽  
Xue-Ying Liu ◽  
Xiao-Dong Chen

To study the effect of fly ash, mineral powder, and silica fume on the working performance and mechanical properties of C70 high-performance concrete by adding the same amount of fly ash, granulated blast furnace slag powder, and silica fume as a composite admixture to replace the amount of cement. Influencing the law, at the same time, the optimal dosage ratio of various admixtures is determined through the orthogonal experiment. The results show that: when adding 6% silica fume, it can improve the performance of high-performance concrete. When the amount is increased, the viscosity of the concrete increases and the fluidity decreases. Incorporating an appropriate amount of silica fume can greatly increase the compressive strength of concrete. When blended with fly ash in the proportion of 20%, the performance of high-performance concrete is better. When the same amount of fly ash replaces cement, fly ash reduces hydration and improves the cohesion of concrete, 7d, 28d the compressive strength of the cube increases significantly. Adding 10% mineral powder, mineral powder can affect the early compressive strength of highperformance concrete, extend the setting time of concrete, and improve the pumping capacity of concrete.

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5968
Author(s):  
Wen-Ten Kuo ◽  
Zheng-Yun Zhuang

With the increasing importance of offshore wind turbines, a critical issue in their construction is the high-performance concrete (HPC) used for grouting underwater foundations, as such materials must be better able to withstand the extremes of the surrounding natural environment. This study produced and tested 12 concrete sample types by varying the water/binder ratio (0.28 and 0.30), the replacement ratios for fly ash (0%, 10%, and 20%) and silica fume (0% and 10%), as substitutes for cement, with ground granulated blast-furnace slag at a fixed proportion of 30%. The workability of fresh HPC is discussed with setting time, slump, and V-funnel flow properties. The hardened mechanical properties of the samples were tested at 1, 7, 28, 56, and 91 days, and durability tests were performed at 28, 56, and 91 days. Our results show that both fly ash (at 20%) and silica fume (at 10%) are required for effective filling of interstices and better pozzolanic reactions over time to produce HPC that is durable enough to withstand acid sulfate and chloride ion attacks, and we recommend this admixture for the best proportioning of HPC suitable for constructing offshore wind turbine foundations under the harsh underwater conditions of the Taiwan Bank. We established a model to predict a durability parameter (i.e., chloride permeability) of a sample using another mechanical property (i.e., compressive strength), or vice versa, using the observable relationship between them. This concept can be generalized to other pairs of parameters and across different parametric categories, and the regression model will make future experiments less laborious and time-consuming.


2013 ◽  
Vol 405-408 ◽  
pp. 2843-2846
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
Myung Sug Cho ◽  
...  

High performance concrete (HPC) can be made with cement alone or any combination of cement and mineral components, such as, blast furnace slag, fly ash, silica fume, kaolin, rice husk ash, and fillers, such as limestone powder [. In this study, three mixes of high performance concrete (HPC) with same water-binder ratio and different types of mineral admixtures were prepared. he compressive strength, splitting tensile strength and modulus of elasticity values were measured in accordance with the ASTM. The influence of fly ash (FA), blast furnace slag (BS) and silica fume (SF) on mechanical properties of HPC were compared and analyzed. Their mechanical properties are measured at 7 days and 28 days. The results showed that specimen BS45+SF5 performed better than specimens BS30+FA25+SF5 and BS65+SF5 for the compressive strength, splitting tensile strength and modulus of elasticity.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 38-47
Author(s):  
Joaquín Abellán García ◽  
Nancy Torres Castellanos ◽  
Jaime Antonio Fernandez Gomez ◽  
Andres Mauricio Nuñez Lopez

Ultra-high-performance concrete (UHPC) is a kind of high-tech cementitious material with superb mechanical and durability properties compared to other types of concrete. However, due to the high content of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. For this reason, several efforts around the world have been made to develop UHPC with greener and less expensive local pozzolans. This study aimed to design and produce UHPC using local fly ash available in Colombia. A numerical optimization, based on Design of Experiments (DoE) and multi-objective criteria, was performed to obtain a mixture with the proper flow and highest compressive strength, while simultaneously having the minimum content of cement. The results showed that, despite the low quality of local fly ashes in Colombia, compressive strength values of 150 MPa without any heat treatment can be achieved.


2018 ◽  
Vol 761 ◽  
pp. 120-123 ◽  
Author(s):  
Vlastimil Bílek ◽  
David Pytlík ◽  
Marketa Bambuchova

Use a ternary binder for production of a high performance concrete with a compressive strengths between 120 and 170 MPa is presented. The water to binder ratio of the concrete is 0.225 and the binder is composed of Ordinary Portland Cement (OPC), condensed silica fume (CSF), ground limestone (L), fly ash (FA) and metakaoline (MK). The dosage of (M + CSF) is kept at a constant level for a better workability of fresh concrete. Different workability, flexural and compressive strengths were obtained for concretes with a constant cement and a metakaoline dosage, and for a constant dosage (FA + L) but a different ratio FA / L. An optimum composition was found and concretes for other tests were designed using this composition.


2019 ◽  
Vol 292 ◽  
pp. 108-113 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Roman Chylík ◽  
Zdeněk Prošek

The paper describes an experimental program focused on the research of high performance concrete with partial replacement of cement by fly ash. Four mixtures were investigated: reference mixture and mixtures with 10 %, 20 % and 30 % cement weight replaced by fly ash. In the first stage, the effect of cement replacement was observed. The second phase aimed at the influence of homogenization process for the selected 30% replacement on concrete properties. The analysis of macroscopic properties followed compressive strength, elastic modulus and depth of penetration of water under pressure. Microscopic analysis concentrated on the study of elastic modulus, porosity and mineralogical composition of cement matrix using scanning electron microscopy, spectral analysis and nanoindentation. The macroscopic results showed that the replacement of cement by fly ash notably improved compressive strength of concrete and significantly decreased the depth of penetration of water under pressure, while the improvement rate increased with increasing cement replacement (strength improved by 18 %, depth of penetration by 95 % at 30% replacement). Static elastic modulus was practically unaffected. Microscopic investigation showed impact of fly ash on both structure and phase mechanical performance of the material.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2090 ◽  
Author(s):  
Francisco Javier Vázquez-Rodríguez ◽  
Nora Elizondo-Villareal ◽  
Luz Hypatia Verástegui ◽  
Ana Maria Arato Tovar ◽  
Jesus Fernando López-Perales ◽  
...  

In the present work, the effect of mineral aggregates (pumice stone and expanded clay aggregates) and chemical admixtures (superplasticizers and shrinkage reducing additives) as an alternative internal curing technique was investigated, to improve the properties of high-performance concrete. In the fresh and hardened state, concretes with partial replacements of Portland cement (CPC30R and OPC40C) by pulverized fly ash in combination with the addition of mineral aggregates and chemical admixtures were studied. The physical, mechanical, and durability properties in terms of slump, density, porosity, compressive strength, and permeability to chloride ions were respectively determined. The microstructural analysis was carried out by scanning electronic microscopy. The results highlight the effect of the addition of expanded clay aggregate on the internal curing of the concrete, which allowed developing the maximum compressive strength at 28 days (61 MPa). Meanwhile, the replacement of fine aggregate by 20% of pumice stone allowed developing the maximum compressive strength (52 MPa) in an OPC-based concrete at 180 days. The effectiveness of internal curing to develop higher strength is attributed to control in the porosity and a high water release at a later age. Finally, the lowest permeability value at 90 days (945 C) was found by the substitutions of fine aggregate by 20% of pumice stone saturated with shrinkage reducing admixture into pores and OPC40C by 15% of pulverized fly ash. It might be due to impeded diffusion of chloride ions into cement paste in the vicinity of pulverized fly ash, where the pozzolanic reaction has occurred. The proposed internal curing technology can be considered a real alternative to achieve the expected performance of a high-performance concrete since a concrete with a compressive strength range from 45 to 67 MPa, density range from 2130 to 2310 kg/m3, and exceptional durability (< 2000 C) was effectively developed.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
E. H. Kadri ◽  
S. Aggoun ◽  
S. Kenai ◽  
A. Kaci

The compressive strength of silica fume concretes was investigated at low water-cementitious materials ratios with a naphthalene sulphonate superplasticizer. The results show that partial cement replacement up to 20% produce, higher compressive strengths than control concretes, nevertheless the strength gain is less than 15%. In this paper we propose a model to evaluate the compressive strength of silica fume concrete at any time. The model is related to the water-cementitious materials and silica-cement ratios. Taking into account the author's and other researchers’ experimental data, the accuracy of the proposed model is better than 5%.


Sign in / Sign up

Export Citation Format

Share Document