scholarly journals Taiwan’s Ecological Footprint, 2012-2018

2021 ◽  
Vol 237 ◽  
pp. 04039
Author(s):  
Yung-Jaan Lee ◽  
Po-Shu Wu ◽  
Lei Chai

The Ecological Footprint (EF) is a measurement broadly adopted by the international community to measure the progress toward sustainability. Taiwan’s EF methods refer to the annual reports of the Global Footprint Network (GFN). Therefore, the calculation method closely follows international trends and is updated accordingly. Since the first calculation of Taiwan’s EF in 1998, Taiwan’s EF has been revised several times. At present, the EF from 1994 to 2011 can be obtained. The purpose of this study is to update Taiwan’s EF from 2012 to 2018. This study divides the biologically productive lands into six categories. Since there are two different data sources for fishing grounds and carbon emissions, Taiwan’s EF can be calculated with four different results. Overall, Taiwan’s EF shows a slow downward trend from 2012 to 2018. Furthermore, Taiwan’s carbon footprint accounted for about 70% of the EF, followed by the cropland footprint, which accounted for about 20% of the EF. Compared with global trends, Taiwan’s carbon footprint is about 10% higher than the global carbon footprint, indicating that Taiwan’s carbon emissions are higher than the global average. With the global emphasis on carbon reduction, Taiwan needs to focus on improving carbon emissions.

2021 ◽  
Author(s):  
abduxukur zayit ◽  
Kun Song ◽  
Antariksh Bhagwan Ghengare ◽  
Feng Gao

Abstract BackgroundA living University campus is like a model city; its energy and carbon auditing can also model how energy and carbon can be studied and analyzed in a city. China’s colleges and universities face grave problems, now and in the future - from declining quality of campus environments to deteriorating building performance, antiquated facilities, and inefficient energy and resources consumption. While research and discussion exists on improving existing university buildings’ energy performance and evaluation standards - much of that research focuses on energy savings, rather than on greenhouse gas emissions reductions. Calculation of campus carbon emissions is the first step for transforming and planning each existing university to carbon neutral campus. Some researchers of campus carbon emissions in China have made calculations, which, although as yet unpublished, create an initial framework for carbon-neutral campus plan targets. The present research gives an overview of universities’ drive towards sustainability in China and in other countries. The paper then details carbon footprint accounting steps, quantifying major carbon emission sources and carbon sequestration by vegetation inside the Tianjin University’s Weijin Road and Peiyangyuan Campuses. Results from China’s universities are compared with international results in the scientific literature. In this paper, based on this data, we suggest strategies and show preliminary target settings for how to transform Weijin Road into a carbon-neutral campus. ResultsAnnual carbon emissions for 2019 of the Weijin Road campus were 58,172.68 tonnes, (2.60 tonnes per person), and Peiyangyuan campus, 55,213.75 tonnes (2.46 tonnes per person). The largest sources of the two campuses’ greenhouse gas emissions were electricity and gas; Weijin Road campus; electricity = 61.42%, gas = 20.73%, and Peiyangyuan campus electricity = 69.32%, gas = 11.60%. Carbon sequestered in the two campuses by vegetation are 11,257.34 tonnes and 27,856.51 tonnes respectively. The renewable energy contribution to carbon reduction in Peiyangyuan campus is 50.85 tonnes.ConclusionPer person carbon emissions of Tianjin University’s two campuses are below the average for some US campuses, but are also greater than some in European countries. Research may investigate methods used by successful campuses towards becoming carbon neutral.


2021 ◽  
Vol 67 (2) ◽  
pp. 205-227
Author(s):  
Marilyn A. Brown ◽  
Blair Beasley ◽  
Fikret Atalay ◽  
Kim M. Cobb ◽  
Puneet Dwiveldi ◽  
...  

AbstractSubnational entities are recognizing the need to systematically examine options for reducing their carbon footprints. However, few robust and comprehensive analyses are available that lay out how US states and regions can most effectively contribute. This paper describes an approach developed for Georgia—a state in the southeastern United States called “Drawdown Georgia”, our research involves (1) understanding Georgia’s baseline carbon footprint and trends, (2) identifying the universe of Georgia-specific carbon-reduction solutions that could be impactful by 2030, (3) estimating the greenhouse gas reduction potential of these high-impact 2030 solutions for Georgia, and (4) estimating associated costs and benefits while also considering how the solutions might impact societal priorities, such as economic development opportunities, public health, environmental benefits, and equity. We began by examining the global solutions identified by Project Drawdown. The resulting 20 high-impact 2030 solutions provide a strategy for reducing Georgia’s carbon footprint in the next decade using market-ready technologies and practices and including negative emission solutions. This paper describes our systematic and replicable process and ends with a discussion of its strengths, weaknesses, and planned future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yung-Jaan Lee ◽  
Lei Chai ◽  
Po-Shu Wu

AbstractThis study examines Taiwan’s ecological footprint (EF) and its Overshoot Day from 2000 to 2018. The latest EF calculation method is used to determine the conversion rates and equivalent factors of bioproductive lands in each year to establish a database of Taiwan’s EF in that period. The results reveal that Taiwan’s EF was 7.69 gha/person in 2000, dropping steadily to 6.46 gha/person in 2018. Taiwan’s carbon footprint accounted for about 61% of Taiwan’s total EF, slightly higher than the world average (60%). The carbon footprint as a proportion of the total EF has been increasing annually. This study adopts social communication tools, such as the overshoot day and the earth clock, to promote sustainable development goals and climate change policy initiatives. Global Footprint Network (GFN) updates the overshoot day of each country in its database yearly, based on each country’s EF and biocapacity. Since Taiwan is not included in GFN, this study adopts the same method and finds out that Taiwan's Overshoot Day in 2018 was March 14th, meaning that on March 14th, 2018, Taiwan exhausted all of the biological resources that its bioproductive lands can regenerate in the year. If the global population lived like Taiwanese, four Earths would be required to provide the resources used. This result not only reflects the consumption of natural resources in Taiwan, but also indicates that Taiwan should focus on sustainable development and reduce that consumption.


Author(s):  
Dede Long ◽  
Grant H. West ◽  
Rodolfo M. Nayga

Abstract The agriculture and food sectors contribute significantly to greenhouse gas emissions. About 15 percent of food-related carbon emissions are channeled through restaurants. Using a contingent valuation (CV) method with double-bounded dichotomous choice (DBDC) questions, this article investigates U.S. consumers’ willingness to pay (WTP) for an optional restaurant surcharge in support of carbon emission reduction programs. The mean estimated WTP for a surcharge is 6.05 percent of an average restaurant check, while the median WTP is 3.64 percent. Our results show that individuals have a higher WTP when the surcharge is automatically added to restaurant checks. We also find that an information nudge—a short climate change script—significantly increases WTP. Additionally, our results demonstrate that there is heterogeneity in treatment effects across consumers’ age, environmental awareness, and economic views. Our findings suggest that a surcharge program could transfer a meaningful amount of the agricultural carbon reduction burden to consumers that farmers currently shoulder.


Author(s):  
Peter Kurzweil ◽  
Alfred Müller ◽  
Steffen Wahler

Compared to the medical, economic and social implications of COVID-19 vaccinations, little attention has been paid to the ecological balance to date. This study is an attempt to estimate the environmental impact of two mRNA vaccines in terms of CO2 equivalents with respect to their different freezing strategies and supply chain organization. Although it is impossible to accurately calculate the actual environmental impact of the new biochemical synthesis technology, it becomes apparent that transport accounts for up to 99% of the total carbon footprint. The emissions for air freight, road transportation and last-mile delivery are nearly as 19 times the emissions generated from ultra-deep freeze technologies, the production of dry ice, glass and medical polymers for packaging. The carbon footprint of a single mRNA vaccine dose injected into a patient is about 0.01 to 0.2 kg CO2 equivalents, depending on the cooling technology and the logistic routes to the vaccination sites in Germany.


Author(s):  
Jose Herrera-Camacho ◽  
Eduardo Baltierra-Trejo ◽  
Paul Adolfo Taboada-González ◽  
Luisa Fernanda Gonzalez ◽  
Liliana Marquez-Benavides

Mexico´s inhabitants have approximately 7 million dogs and cats as pets, of which there is no accurate information about their environmental impacts as a result of their feeding and comfort requirements. The objective of this study is to compare the environmental footprint between a dog and a cat in a family environment. For this purpose, a life cycle analysis was performed including, among other factors, its feeding and waste management in one year of life. Different environmental indicators including the carbon footprint were considered. It was found that the equivalent CO2 emission of a dog is twice that estimated for a domestic cat and that the main contribution is due to the food production. The ecological footprint that is generated when satisfying the requirements for pet´s well-being impacts in the environment contributes primarily to the carbon footprint.


2020 ◽  
Vol 4 (1) ◽  
pp. 13-26
Author(s):  
Sally Olasogba ◽  
Les DUCKERS

Abstract: Aim: According to COP23, Climate Change threatens the stability of the planet’s ecosystems, with a tipping point believed to be at only +2°C.  With the burning of fossil fuels, held responsible for the release of much of the greenhouse gases, a sensible world- wide strategy is to replace fossil fuel energy sources with renewable ones. The renewable resources such as wind, hydro, geothermal, wave and tidal energies are found in particular geographical locations whereas almost every country is potentially able to exploit PV and biomass. This paper examines the role that changing climate could have on the growing and processing of biomass. The primary concern is that future climates could adversely affect the yield of crops, and hence the potential contribution of biomass to the strategy to combat climate change. Maize, a C4 crop, was selected for the study because it can be processed into biogas or other biofuels. Four different Nigerian agricultural zones growing maize were chosen for the study. Long-term weather data was available for the four sites and this permitted the modelling of future climates. Design / Research methods: The results of this study come from modelling future climates and applying this to crop models. This unique work, which has integrated climate change and crop modelling to forecast yield and carbon emissions, reveals how maize responds to the predicted increased temperature, change in rainfall, and the variation in weather patterns. In order to fully assess a biomass crop, the full energy cycle and carbon emissions were estimated based on energy and materials inputs involved in farm management: fertilizer application, and tillage type. For maize to support the replacement strategy mentioned above it is essential that the ratio of energy output to energy input exceeds 1, but of course it should be as large as possible. Conclusions / findings: Results demonstrate that the influence of climate change is important and in many scenarios, acts to reduce yield, but that the negative effects can be partially mitigated by careful selection of farm management practices. Yield and carbon footprint is particularly sensitive to the application rate of fertilizer across all locations whilst climate change is the causal driver for the increase in net energy and carbon footprint at most locations. Nonetheless, in order to ensure a successful strategic move towards a low carbon future, and sustainable implementation of biofuel policies, this study provides valuable information for the Nigerian government and policy makers on potential AEZs to cultivate maize under climate change. Further research on the carbon footprint of alternative bioenergy feedstock to assess their environmental carbon footprint and net energy is strongly suggested. Originality / value of the article: This paper extends the review on the impact of climate change on maize production to include future impacts on net energy use and carbon footprint using a fully integrated assessment framework. Most studies focus only on current farm energy use and historical climate change impact on farm GHG emissions.   


2019 ◽  
Vol 5 (02) ◽  
pp. 133-136
Author(s):  
Dheeraj Rathore ◽  
Ratan Singh

The carbon footprint reflects the greenhouse gases (GHGs) generated throughout the life cycle of a human activity or product, and is therefore an important tool for assessing and managing GHGs emissions. Ecological footprint display the impact assesments of waste managments process of any industry, as it generates very harmful products in the environment. However, it needs attention to use advanced technology to mentain the equllibrium of carbon and ecological footprint of textile industry. Presented review comprises the carbon and ecological foot prints of textile effluents and 3R strategy for their possible balance. 3R strategy i.e. reduce, recycle and reuse were discussed in terms of carbon reduction through transport management, and waste management generated from textile industries including nutritional value of textile sludge and effluent for agricultural use.


Sign in / Sign up

Export Citation Format

Share Document