scholarly journals Research Progress on Continuous Cropping Obstacle and Green Control of Strawberry

2021 ◽  
Vol 251 ◽  
pp. 02044
Author(s):  
Zhengwei Xie ◽  
Qianqian Ma ◽  
Wanyun Peng ◽  
Zhide Wang ◽  
Peng Wu ◽  
...  

Continuous cropping obstacle is a big problem of Strawberry planting. Continuous cropping obstacle leads to the accumulation of phenolic acids, imbalance of soil microorganism, deterioration of physical and chemical properties, resulting in sharp decline in Strawberry yield and quality. At present, the prevention and cure of continuous cropping obstacle of Strawberry is an urgent problem to be solved. The pathogen does not produce drug resistance, is safe to fresh fruit and does not pollute the environment.

2021 ◽  
Vol 8 (7) ◽  
pp. 214-220
Author(s):  
Long Tong ◽  
◽  
Hongyan Li ◽  
Xiaoming Liu ◽  
Bin Li ◽  
...  

The continuous obstacle of Dictyophora indusiata has become the one of the main factors affecting the healthy development of D. indusiata industry. In order to study the effects of continuous cropping of D. indusiata on the soil environment, four treatments were used in this study: no planted (CK), planted for 1 years (1Y), continuous cropping for 2 years (2Y) and continuous cropping for 3 years (3Y), to determined of the yield of D. indusiata, soil physical and chemical properties, microbial content and enzyme activity. The results showed that the yield and soil pH value decreased with the increase of continuous cropping years, and the contents of organic matter, total nitrogen, total phosphorus and total potassium, C/N and C/P also increased with the increase of continuous cropping years. Soil availability decreased with the increase of continuous cropping years, the content of alkaline nitrogen, available phosphorus and available potassium decreased by 12.25%, 28.91% and 24.86% at 3Y compared with 1Y, respectively. The biomass of bacteria, actinomycetes and fungi and the total amount of microorganism in soil increased at 1Y compared with CK, but with the increase of continuous cropping years, the biomass of bacteria and actinomycetes and the total amount of microorganism decreased significantly, while the biomass of fungi increased significantly; the continuous cropping of D. indusiata also decreased the value of bacteria/fungi in soil. The enzyme activities of the soil were higher than those of the unplanted plots, however, the activities of urease, catalase, peroxidase, sucrase, phosphatase and protease decreased with the increase of continuous cropping years. In a word, with the increase of continuous cropping, the acidity of rhizosphere soil increased, the availability of soil nutrients and the activity of soil enzymes decreased, the biomass of soil microorganisms, bacteria and actinomycetes decreased. However, the increase of fungal biomass led to the decline of soil texture.


2013 ◽  
Vol 726-731 ◽  
pp. 310-314
Author(s):  
Ming Da Liu ◽  
Xiao Ming Ji ◽  
Yao Jing Wang

Nickel is a kind of rare metal which is widely distributed in the earth's crust, and is mainly used in manufacturing alloy. Nickel is a trace element essential to animals and plants growth and development, but high concentration of nickel will hamper the growth of plants and animals, and even produce toxic effects. This paper summarizes the physical and chemical properties of nickel, the sources of organisms exposed to nickel and the influence of different concentrations of nickel on animal and plant, and summarizes the relevant research progress.


2011 ◽  
Vol 204-210 ◽  
pp. 1270-1273
Author(s):  
Zhi Ling Yan ◽  
Yi Fei Qin ◽  
Hui Qiang Sun

Having been applied in oral cavity rehabilitation for more than one century, soft denture liner still can not meet clinical requirements now. This article puts forward a review on the research achievements of its physical and chemical properties (including bond strength between soft liner and denture base, soft liners’ elasticity, water sorption and solubility), factors influencing microbes’ adherence, prevention and cure measurements, and recent major tasks in this field and so on.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1154 ◽  
Author(s):  
Loriana Cardone ◽  
Donato Castronuovo ◽  
Michele Perniola ◽  
Laura Scrano ◽  
Nunzia Cicco ◽  
...  

Soil physical and chemical properties play a central role in plant growth, influencing the availability of air, nutrients, and water. The aim of this two-year study was to evaluate the effect of soil texture and chemical properties (pH, electrical conductivity, organic carbon, organic matter, total, and active lime) on saffron (Crocus sativus L.) growth, yield, and quality. Corms were planted in pots filled with seven different soil textures obtained mixing an increasing quantity (33% and 66%) of sand to a clay soil (S1) and to a clay loam soil (S2) compared to a full (100%) sandy soil as a control (S7). A randomized complete block design comprising of seven pots with different types of soil (S1, S2, S3, S4, S5, S6, and S7) replicated three times was used. The results showed that the highest flower number (320.3 n m−2), stigma yield (2.0 g m−2), daughter corm production (7.9 kg m−2), and horizontal diameter (3.1 cm) were derived from S3 and S4 soils. These were characterized by a loam and sandy-loam texture, not very calcareous, with a sub-alkaline and neutral pH, low electrical conductivity, a content of organic matter between 5.46 and 8.67 g kg−1, and a content of active lime between 21.25 and 26.25 g kg−1. According to International Organization for Standardization (ISO) references, although all spice samples belonged to the first qualitative category, S1, S3, and S2 soils recorded the highest value for coloring power (290.5, 289.1, and 287.6 A1%1cm 440 nm, respectively). The highest values of bittering (109.2 A1%1cm 257 nm) and aromatic (26.6 A1%1cm 330 nm) power were reached by S3 soil. Positive correlations were found both between color with clay and organic matter, and aroma with total calcium carbonate. In conclusion, the assessment of soil conditions is particularly important to obtain the best saffron performance in terms of stigma and daughter corms yield as well as spice qualitative traits.


2020 ◽  
Vol 241 ◽  
pp. 97
Author(s):  
N. Kondrasheva ◽  
V. Rudko ◽  
M. Nazarenko ◽  
R. Gabdulkhakov

Paper studies the effect of excess pressure during delayed coking of asphalt, obtained by propane deasphaltization of tar, on yield and physical and chemical properties of hydrocarbon fuels' components and solid-phase product – petroleum coke. Asphalt was coked at a temperature of 500 °C and excess pressure of 0.15-0.35 MPa in a laboratory unit for delayed coking of periodic action. Physical and chemical properties of raw materials and components of light (gasoline), medium (light gasoil), and heavy (heavy gasoil) distillates obtained during experimental study were determined: density, viscosity, coking ability, sulfur content, iodine number, pour points, flash points, fluidity loss and fractional composition. Quantitative group hydrocarbon and microelement compositions and properties of obtained samples of petroleum coke (humidity, ash content, volatiles' yield, sulfur content, etc.) were also studied. Comparative assessment of their quality is given in accordance with requirements of GOST 22898-78 “Low-sulfur petroleum coke. Specifications”. In addition, patterns of changes in excess coking pressure on yield and quality indicators of distillate products and petroleum coke were revealed. With an increase in excess pressure of coking process from 0.15 to 0.35 MPa, content of paraffin-naphthenic hydrocarbons in light and heavy gasoils of delayed coking  decreases. Common pattern in asphalt coking is an increase in yield of coke and hydrocarbon gas with an increase in excess pressure from 0.15 to 0.35 MPa.  


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 195
Author(s):  
Xingjia He ◽  
Sen Li ◽  
Fengzhi Wu

Intercropping plays an essential role in agricultural production, impacting the soil’s physical and chemical properties and microbial communities. However, the responses of ammonia-oxidizing microorganisms in the continuous-cropping soil to different intercropping systems in different growing seasons are still insufficiently studied. Here, we investigated the effects of seven intercropping systems (alfalfa (Medicago sativa L.)/cucumber, trifolium (Trifolium repens L.)/cucumber, wheat (Triticum aestivum L.)/cucumber, rye (Secale cereale L.)/cucumber, chrysanthemum (Chrysanthemum coronrium L.)/cucumber, rape (Brassica campestris L.)/cucumber, mustard (Brassica juncea L.)/cucumber) on soil physical and chemical properties, potential nitrification rate (PNR), soil ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) communities in the greenhouse in spring and autumn. The results showed that, compared with cucumber monoculture, intercropping increased the soil NH4+-N and NO3−-N. The chrysanthemum–cucumber, rape–cucumber, and mustard–cucumber treatments increased soil PNR. Intercropping increased the AOA and AOB abundances in two seasons, especially in rape–cucumber, wheat–cucumber, chrysanthemum–cucumber, and trifolium–cucumber treatments. The ratio of AOA and AOB decreased with seasonal variation. The wheat–cucumber and rape–cucumber treatments increased soil AOA community diversity. Seasonal variation had a significant effect on the relative abundance of the AOB community. Nonmetric multidimensional scaling analysis showed that the AOA and AOB community structures were obviously different from spring to autumn. Redundancy analysis showed that the AOA community was significantly regulated by moisture, NO3−–N, and available potassium (AK), while the AOB community was significantly regulated by moisture, available phosphorus (AP), AK, NO3−-N, and pH. Network analysis showed that the co-occurrence relationship and complexity of AOA and AOB communities were different in two growing seasons. The AOB community may play a critical role in ammonia oxidation in autumn. Taken together, intercropping improved soil physicochemical state, increased soil PNR and significantly altered soil AOA and AOB communities. Seasonal variation significantly altered the AOA and AOB communities’ structure and interaction between them. The effect of seasonal variation on AOA and AOB communities was greater than intercropping.


RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1366-1374
Author(s):  
Bao-ying Zhang ◽  
Hai-nan Luo ◽  
Wei Zhang ◽  
Yang Liu

Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications.


Sign in / Sign up

Export Citation Format

Share Document