scholarly journals Experimental Study on Electrochemical Softening for Cooling Circulating Water in Converter Station

2021 ◽  
Vol 261 ◽  
pp. 02037
Author(s):  
Xia Zhu ◽  
Xiaoyu Liu ◽  
Ying Tian ◽  
Zhengkun Li ◽  
Zhenhua Ren ◽  
...  

In this study, the electrochemical softening method was used to treat the simulated drainage of the converter station, and the treatment effect under different water inlet conditions was investigated. The results show that the hardness removal rate is from 10% to 80% when the residence time is from 0.5h to 4h, and the longer the residence time is, the higher the removal rate is. The maximum scale removal capacity reached 2.67g/h/m2 when residence time was 1h. Through the formula fitting of several groups of tests, it is concluded that the removal effect can be expressed by the formula C0/C=0.9627e(17.73at/V) under different water intake (residence time).

2011 ◽  
Vol 356-360 ◽  
pp. 2153-2157
Author(s):  
Chao Li ◽  
Xiao Yan Zhang ◽  
Jun Liang Liu ◽  
Ding Ding

In this study, we treat rural domestic sewage with the mixture of diatomite and three kinds of coagulant. The result shows that with three mixtures, CODcr removal rate can be above 40%, and above 35% that of ammonia nitrogen. Compared with diatomite alone, the treatment effect has been significantly improved. We can come to a conclusion by the orthogonal experiment that the influencing factors on the effect of coagulant have following order: pH> dosage >stirring time, which means Ph plays an important role on the effect of coagulant.


Author(s):  
Ijas Ahmed. M ◽  
◽  
Amulya Yatelly ◽  
Gangadhara Kiran Kumar L ◽  
◽  
...  

The liquid desiccant systems are one of the promising technologies in dehumidification applications. The experimental study on dehumidification performance of a counter flow structured packing liquid desiccant system is done with Aqueous HCO2K as working fluid. The HCO2K solution at different mass flow rate of air and solution is tested. The airflow rate is varied from 0.187 kg/s to 0.272 kg/s and the solution flow rate is varied from 0.053 to 0.115 kg/s. The output parameters, specific moisture change, moisture removal rate, dehumidification effectiveness and latent heat removal capacity varied in following ranges 3-4.2 g/kg of dry air, 2.4-3.1 kg/h, 0.12-0.21 and 1.7-2.1 kW respectively. Particularly when air flow rate increases from 0.187 kg/s to 0.272 kg/s the moisture removal performance improves about 11% whereas when the solution flow rate increases from 0.055 to 0.115 kg/s, improvement in moisture removal performance about 20%. The results imply that increase in solution flow rate always have the positive impact on dehumidification performance. The increase in airflow rate has the negative impact on specific moisture removal and effectiveness, but the impact is positive in case of the moisture removal rate and latent heat removal capacity. The Overall results show a promising dehumidification performance and further improvement is possible by incorporating a cooling system.


2021 ◽  
Vol 698 (1) ◽  
pp. 012029
Author(s):  
Suntoyo ◽  
Taufiq Wibawa Muslim ◽  
Febrian Tegar Wicaksana ◽  
Shade Rahmawati ◽  
Silvianita

2021 ◽  
Vol 676 (1) ◽  
pp. 012099
Author(s):  
Yao Yang ◽  
Xiaona Li ◽  
Xiang Li ◽  
Yuchao Li ◽  
Tianqi Meng ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 2745-2748
Author(s):  
Ling Yan Ren ◽  
Gang Xu

The paper adopted Coagulation-Fenton Oxidation Method on treating the wastewater of 6-nitro-1,2 diazonium oxygroup naphthalene-4-sulfoacid production process (i.e. 6-nitry wastewater), introduced the treatment effect of the combined technology used on 6-nitry wastewater, and studied the factors influencing the treatment effect, to determine the reasonable parameters of the technology on treating 6-nitry wastewater. The results showed that Using polyaluminium chloride (mass fraction 2%) as flocculant for treating 6-nitry wastewater, the COD removal rate reached up to 48.7%; Making Fenton reagent oxidation treatment on coagulation yielding water, under the best conditions for solution acidity controlled at pH3 or so, in the 100 mL wastewater, 30% hydrogen peroxide was 5.0 mL, 0.5 mol/L ferrous sulfate solution was 4.0 mL, reaction time was 60 min, the COD removal rate could reach 98% or more.


2016 ◽  
Vol 874 ◽  
pp. 291-296 ◽  
Author(s):  
Lin Li ◽  
Jun Wang ◽  
Huai Zhong Li

An experimental study is reported to characterise the femtosecond (FS) laser grooving process for Germanium (Ge) substrates. The effects of process parameters, including laser fluence, pulse repetition rate and scan speed, on the groove characteristics, material removal rate (MRR) and heat affected zone (HAZ) size are discussed. It is shown that with properly selected process parameters, high quality micro-grooves can be obtained on Ge wafers. Recommendations are finally made on the selection of the most appropriate process parameters for FS micro-grooving of Ge substrates.


2020 ◽  
Vol 5 (1) ◽  
pp. 27-35
Author(s):  
Fivi Elvira Sirajuddin ◽  
Muhammad Fadly Saleh

This experimental study aims to determine the most optimal biofiltration media composition for domestic wastewater treatment using 4 upflow biofilter reactors with a combining pumice and coconut shell charcoal as an media filter. ,The combination ratio of media filter is UAF 1 = 1: 0, UAF 2 = 2: 1, UAF 3 = 1: 2, and UAF 4 = 1 : 1 with an overall filter media thickness of 60 cm. Sampling time is done every 2 days for 16 day were taken at the four experimental reactors to be tested for each parameter of pH, COD, nitrate and ammonia. The method of analysis carried out after obtaining data from testing in the laboratory, that is descriptively related to variations in filter media, and the residence time of wastewater in the reactor. The results showed that the reactor with the best processing in normalizing pH was UAF 1. While the best filter media composition in COD and nitrate removal was UAF 3 reactor with 77.78% and 87.17% removal results. Ammonia removal occurred throughout the experimental reactor with a result <-0.05 mg / l was considered quite good and indicated the decomposition process was successful. Penelitian ini dilakukan untuk menentukan komposisi media biofiltrasi yang paling optimal untuk pengolahan air limbah domestik dengan menggunakan 4 reaktor upflow biofilter dengan mengkombinasikan batu apung dan arang tempurung kelapa sebagai media filter. Rasio dari kombinasi media filter tersebut adalah UAF 1 = 1:0, UAF 2 = 2:1, UAF 3=1:2, dan UAF 4=1:1 dengan ketebalan media filter secara keseluruhan 60 cm. Waktu pengambilan sampel dilakukan setiap 2 hari selama 16 hari. Pengambilan sampel dilakukan pada keempat reaktor percobaan untuk diujikan masing-masing parameter pH, COD, nitrat dan amoniak. Metode analisa yang dilakukan setelah mendapatkan data dari pengujian di laboratorium, yaitu secara deskriptif terkait dengan variasi media filter, dan waktu tinggal air limbah dalam reaktor. Hasil penelitian menunjukkan reaktor yang paling baik pengolahannya dalam menormalkan pH adalah UAF 1. Sementara komposisi media filter yang paling baik dalam penyisihan COD dan nitrat adalah reaktor UAF 3 dengan hasil penyisihan sebesar 77,78% dam 87,17%. Penyisihan amoniak terjadi di seluruh reaktor percobaan dengan hasil <-0,05 mg/l dinilai cukup baik dan mengindikasikan proses penguraian polutan berjalan dengan baik.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 51-56 ◽  
Author(s):  
G.-W. Li ◽  
H.-Y. Hu ◽  
J.-M. Hao ◽  
H.-Q. Zhang

The biodegradation of toluene and benzene in a biofilter using cylindrical activated carbon as the filler materials was studied. Three gas flow rates, i.e. 0.25, 0.50 and 0.75 m3/h, corresponding to empty bed gas residence of 75, 37.5 and 25 s, respectively, and total organic load lower than 400 g/m3.h were tested. The biofilter proved to be highly efficient in biodegradation of toluene and benzene, and toluene was more easily degraded than benzene. When each inlet load was lower than 150 g/m3.h, removal rate increased with inlet load and reached a maximum, which was 150 and 120 g/m−3.h for toluene and benzene, respectively. For inlet load higher than the maximum removal capacity conditions, the removal rate decreased with inlet load. Carbon dioxide concentration profile through the biofilter revealed that the mass ratios of carbon dioxide produced to the toluene and benzene removed were 2.15 g(CO2)/g(toluene) and 1.67 g(CO2)/g(benzene), which furthermore, confirmed the biodegradation performance in biofilter. The observation of biotic community demonstrated that the microbes consisted of bacillus, spore bacillus and fungi, of which the spore bacillus was dominant.


Sign in / Sign up

Export Citation Format

Share Document