scholarly journals Exhaust emission and fuel consumption characteristics of light duty under different driving cycles

2021 ◽  
Vol 268 ◽  
pp. 01050
Author(s):  
Peilin Geng ◽  
Le Liu ◽  
Yuwei Wang ◽  
Xionghui Zou

This paper focuses on light duty of china 6 with the same emission control technology. three vehicles, with different engine displacements, were selected to study the emission and fuel consumption characteristics under three test cycles of NEDC, WLTC and CLTC. The results show that the emissions of CO, THC and NOx under WLTC cycle are minimum, compared with the NEDC and CLTC circulation. with the decrease of the engine displacement, the difference of CO and THC emissions increases among different cycles, which shows small displacement engine vehicles are greatly affected by driving cycles. Compared with other testing conditions, the PN emissions are relatively larger, but the difference of PN emissions is very small among the three test cycles.The fuel consumption of the WLTC test cycle is the smallest among the three cycles. As the engine displacement decreases, the fuel consumption difference decreases, indicating that the fuel consumption of large displacement engine vehicles is greatly affected by the cycle condition.

2018 ◽  
Vol 8 (12) ◽  
pp. 2390 ◽  
Author(s):  
Jaehyuk Lim ◽  
Yumin Lee ◽  
Kiho Kim ◽  
Jinwook Lee

The five-driving test mode is vehicle driving cycles made by the Environment Protection Association (EPA) in the United States of America (U.S.A.) to fully reflect actual driving environments. Recently, fuel consumption value calculated from the adjusted fuel consumption formula has been more effective in reducing the difference from that experienced in real-world driving conditions, than the official fuel efficiency equation used in the past that only considered the driving environment included in FTP and HWFET cycles. There are many factors that bring about divergence between official fuel consumption and that experienced by drivers, such as driving pattern behavior, accumulated mileage, driving environment, and traffic conditions. In this study, we focused on the factor of causing change of fuel efficiency value, calculated according to how many environmental conditions that appear on the real-road are considered, in producing the fuel consumption formula, and that of the vehicle’s accumulated mileage in a 2.0 L gasoline-fueled vehicle. So, the goals of this research are divided into four major areas to investigate divergence in fuel efficiency obtained from different equations, and what factors and how much CO2 and CO emissions that are closely correlated to fuel efficiency change, depending on the cumulative mileage of the vehicle. First, the fuel consumption value calculated from the non-adjusted formula, was compared with that calculated from the corrected fuel consumption formula. Also, how much CO2 concentration levels change as measured during each of the three driving cycles was analyzed as the vehicle ages. In addition, since the US06 driving cycle is divided into city mode and highway mode, how much CO2 and CO production levels change as the engine ages during acceleration periods in each mode was investigated. Finally, the empirical formula was constructed using fuel economy values obtained when the test vehicle reached 6500 km, 15,000 km, and 30,000 km cumulative mileage, to predict how much fuel consumption of city and highway would worsen, when mileage of the vehicle is increased further. When cumulative mileage values set in this study were reached, experiments were performed by placing the vehicle on a chassis dynamometer, in compliance with the carbon balance method. A key result of this study is that fuel economy is affected by various fuel consumption formula, as well as by aging of the engine. In particular, with aging aspects, the effect of an aging engine on fuel efficiency is insignificant, depending on the load and driving situation.


2019 ◽  
Vol 20 (10) ◽  
pp. 1047-1058 ◽  
Author(s):  
Giovanni Vagnoni ◽  
Markus Eisenbarth ◽  
Jakob Andert ◽  
Giuseppe Sammito ◽  
Joschka Schaub ◽  
...  

The increasing connectivity of future vehicles allows the prediction of the powertrain operational profiles. This technology will improve the transient control of the engine and its exhaust gas aftertreatment systems. This article describes the development of a rule-based algorithm for the air path control, which uses the knowledge of upcoming driving events to reduce especially [Formula: see text] and particulate (soot) emissions. In the first section of this article, the boosting and the lean [Formula: see text] trap systems of a diesel powertrain are investigated as relevant sub-systems for shorter prediction horizons, suitable for Car-to-X communication range. Reference control strategies, based on state-of-the-art engine control unit algorithms and suitable predictive control logics, are compared for the two sub-systems in a model in the loop simulation environment. The simulation driving cycles are based on Worldwide harmonized Light-duty Test Cycle and Real Driving Emissions regulations. Due to the shorter, and consequently more probable, prediction horizon and the demonstrated emission improvements, a dedicated rule-based algorithm for the air path control is developed and benchmarked in the Worldwide harmonized Light-duty Test Cycle as described in the second part of this article. Worldwide harmonized Light-duty Test Cycle test results show an improvement potential for engine-out soot and [Formula: see text] emissions of up to 5.2% and 1.2%, respectively, for the air path case and a reduction of the average fuel consumption in Real Driving Emissions of up to 1% for the lean NOx trap case. In addition, the developed rule-based algorithm allows the adjustment of the desired NOx–soot trade-off, while keeping the fuel consumption constant. The study concludes with brief recommendations for future research directions, as for example, the introduction of a prediction module for the estimation of the vehicle operational profile in the prediction horizon.


Author(s):  
Baodi Zhang ◽  
Xin Zhang ◽  
Lihe Xi ◽  
Chuanyang Sun

Driving cycles have been developed for various types of vehicle by different nations and in different areas, as they have a substantial effect on analysis of the fuel economy and the emissions. As the concern about the fuel consumption and the emissions of engineering machinery increases continuously, it has become necessary to develop corresponding operation cycles for engineering machinery. However, a typical operation cycle for bulldozers and the methods for its development is still lacking. Therefore, a representative operation cycle for bulldozers was developed in this study. By taking advantage of readily available data from the Controller Area Network (CAN), large amounts of cycle experimental data were acquired in a typical bulldozing process. Two parameters, namely the bulldozing resistance and the speed, were employed to represent the operation cycle. The values of these parameters were calculated on the basis of the dynamic model and the kinematic model combined with system identification methods. Experimental cycles were divided into operation segments according to the respective operating processes, and characteristic parameters for the operation segments were chosen and calculated accordingly. The optimal representative operation cycle was finally selected on the basis of the smallest Mahalanobis distance. The fuel consumption and the probability distributions of the representative operation cycle were also compared with the average fuel consumption and probability distributions of all the operation cycles and analysed. The average correlation coefficient of the probability distributions was 0.936, whereas the difference in the fuel consumptions was only 1.786%. This indicates that the developed cycle is indeed appropriate for representing the operating process of the bulldozer.


Energy ◽  
2018 ◽  
Vol 157 ◽  
pp. 19-30 ◽  
Author(s):  
Jesús Benajes ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
Rafael Lago Sari

2018 ◽  
Vol 184 ◽  
pp. 01020
Author(s):  
Norbert Bagameri ◽  
Bogdan Varga ◽  
Aron Csato ◽  
Dan Moldovanu

The European Commission has been actively involved in the development of the World-wide harmonized Light duty Test Cycle (WLTC). The aim of that project was to develop a harmonized light duty test cycle, that represents the average driving characteristics around the world and to have a legislative world-wide-harmonized procedure put in place from 2017 and onwards for determining the level of CO2 emissions. This work presents the results of the effect of automatic and manual transmissions as a drivetrain of a light duty vehicle on WLTC driving cycle. AVL Cruise software was used as simulation platform to analyse the CO2 level and fuel consumption of dynamic vehicle model using different type of drivetrains. At first the simulation tool and the most influential parameters of the driving cycle procedure are described. In the second phase various components and modules for both dynamic models using automatic and manual transmission, as well as the respective input parameters, were defined. Analyses are based on a developed dynamic vehicle model in AVL Cruise. Finally, the simulation results were evaluated and presented for the two dynamic models according to a legislative driving cycle to provide the basis fuel consumption and exhaust gas emissions.


Author(s):  
Randell L. Honc ◽  
Steven G. Fritz ◽  
Michael B. Schell ◽  
Andrew Tarnow ◽  
Adam Bennett

Conventional switcher or shunting locomotives in North America are powered by a single Electro-Motive Diesel (EMD) 12 or 16 cylinder 645E engine which operate at eight distinct power levels, plus idle, at engine speeds ranging from 250 to 900 rpm, and power ratings of 1125 to 1500 kW. The individual power (notch) settings are weighted according to an established duty cycle to obtain overall fuel consumption and exhaust emission rates. Recently introduced locomotive power systems utilize multiple smaller displacement non-road diesel engines packaged as individual generator sets to obtain a cleaner and more efficient locomotive. This paper compares exhaust emissions and fuel consumption from a conventional switcher locomotive with a single large displacement engine to that of a repowered locomotive utilizing three 345 kW generators.


2021 ◽  
Vol 268 ◽  
pp. 01029
Author(s):  
Meng Zhou ◽  
Chongzhi Zhong ◽  
Jingyuan Li

Through the fuel consumption test of several listed vehicles in China, the basic fuel consumption results of cold start under CLTC-P cycle, the fuel consumption results of vehicles under the condition of air conditioning on, and the fuel consumption results of vehicles under the condition of air conditioning off are measured. At the same time, the differences between NEDC cycle and CLTC-P cycle in China's fuel consumption certification test are compared, and the results of fuel consumption test are combined The fuel consumption test results under CLTC-P cycle are higher than those under NEDC cycle, and the fuel consumption test procedures under Chinese condition are more in line with the actual driving situation in China.


2021 ◽  
Vol 264 ◽  
pp. 01033
Author(s):  
Akmal Mukhitdinov ◽  
Kamoliddin Ziyaev ◽  
Janserik Omarov ◽  
Shokhsanam Ismoilova

The difference in the dynamics of the development of motorization in the regions of the world, the levels of traffic organization, determines the need to develop a methodology for specific operating conditions. Improvement of the existing driving cycles and methods of their development, which characterize the real operating conditions, is of great importance. An important task is considered the implementation of targeted research to improve automobile operation efficiency of vehicles by introducing modern information technologies into the process of determining the driving cycles, modernizing the design parameters of vehicles by assessing the influence of driving conditions when rationing fuel consumption, developing methods for choosing the design parameters of vehicles and the most adapted vehicle for specific operating conditions. The article provides a systematic analysis of scientific research of methodology for constructing driving cycles, factors influencing the performance and driving modes, as well as the fuel consumption of the car. The methodology for constructing a standard driving cycle for specific urban operating conditions is given based by synthesizing on passenger car driving modes in the city.


Sign in / Sign up

Export Citation Format

Share Document